

KPR Institute of Engineering and Technology

Learn Beyond

(Autonomous, NAAC "A")

Avinashi Road, Arasur, Coimbatore.

B.TECH. – Chemical Engineering Curriculum and Syllabi Regulations – 2021

kpriet.edu.in f 🐵 😏 🖸 🌀 /KPRIETonline

B.TECH. - CH - R2021 - CBCS

I. Vision and Mission of the Institute

Vision

To become a premier institute of academic excellence by imparting technical, intellectual and professional skills to students for meeting the diverse needs of industry, society, the nation and the world at large

Mission

- Commitment to offer value-based education and enhancement of practical skills.
- Continuous assessment of teaching and learning processes through scholarly activities.
- Enriching research and innovation activities in collaboration with industry and institutes of repute.
- * Ensuring the academic processes to uphold culture, ethics and social responsibilities.

II. Vision and Mission of the Department

Vision

To become a center of academic and research excellence in chemical engineering, empowering students, supporting innovation, and making meaningful contributions to industry, society, and the global community.

Mission

- Providing quality education that integrates values and practical skills to ensure effective learning outcomes
- Promoting research, innovation, and collaboration with Industry and reputed institutes to bridge academia and industry.
- Inculcating professionalism, ethics, lifelong learning and social responsibilities.

III. Program Educational Objectives (PEOs)

- Graduates of B.Tech. Chemical Engineering will
- **PEO1**: Apply knowledge of mathematics, science, and engineering to solve complex chamical engineering problems in diverse chemical and its allied industries.
- **PEO2:** Design, develop, and optimize chemical processes and products that meet realistic constraints such as economic, environmental, social, ethical, health safety and sustainability
- PEO3: Exhibit a commitment to lifelong learning and professional development, and will contribute to the advancement of the field of chemical engineering and allied engineering through research, development, and innovation. Dr. S. Balasubramanian, M.Tech., Ph.D.

Professor & Head Department of Chemical Engineering KPR Institute of Engineering & Technology Arasur, Coimbatore - 641 407

IV. Program Outcomes (POs)

Graduates of B.Tech. Chemical Engineering will be able to

- **PO1** Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems
- **PO2 Problem analysis:** Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences
- **PO3 Design and development of solutions:** Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
- **PO4 Conduct investigations of complex problems:** Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
- **PO5** Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations
- **PO6** Engineer and society: Apply reasoning informed by the contextual knowledge to access societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
- **P07** Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
- **P08** Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
- **PO9** Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
- **PO10** Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
- **PO11 Project management and finance:** Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments
- **PO12** Life-long learning: Recognize the need for and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

V. Program Specific Outcomes (PSOs)

Graduates of B.Tech. Chemical Engineering will be able

PSO 1: To identify, formulate, and solve chemical engineering problems, including those related to process design and optimization, materials selection and synthesis, and energy and environmental systems.

PSO 2: To use modern engineering tools and techniques to solve chemical engineering and allied engineering problems and engage in life-long learning by innovative practices for process and product development to stay current with advancements in the field.

VI. PEO/PO Mapping

Following three levels of correlation should be used:

- 1. Low
- 2. Medium
- 3. High

	P01	PO2	PO3	PO4	PO5	P06	PO7	P08	PO 9	PO10	PO11	P012
PEO1	3	3	1	2	2	-	-	-	-	-	-	-
PEO2	-	-	2	1	2	3	2		2	2	-	-
PEO3	-	-	-	-	-	2	2	3	3	2	2	2

B.TECH. – CH – R2021 – CBCS

VII. Mapping of Course Outcomes with Program Outcomes

SEM	Subject	P01	P02	PO3	P04	P05	PO6	P07	P08	P09	P010	P011	P012	PS01	PS02
	Calculus and Differential Equations	>	>			P	1				ŧ		>	>	>
	Basics of Mechanical Engineering	>	>		•	•	>	I		1	•	•	>	>	>
	English for Technologists			•					>	>	>	•	>	>	>
	Engineering Physics	>	>	>	ı	F		ı		•	•	•	I	>	>
OEM	Engineering Chemistry	>	>	I	I	1	I	>	•	>	•		>	>	>
	Problem Solving and C Programming	>	×	>	>	ı	>		>	>	>		>	>	>
	Engineering Graphics	>	>	>	•	>	•	•	>	ı	>	•	>	>	>
	Laplace Transforms and Complex Variables	>	*	t	I	I	3			•		ŧ	>	>	>
1	Materials Science	>	>	ı		8	>		•	•	k	•	>	>	>
	Basics of Electrical and Electronics Engineering	1			I	I	t	>	>	I	>	•	>	>	>
SEM II	Introduction to Chemical Engineering	>	>	>	>	>	4	>	>	t	~	•	>	>	>
	Personality Enhancement	ŀ	r	ŀ	ı	ı	4		×	~	~	•	>	>	>
	Chemistry for Technologists	1	>	•	ı	ł	ı	>		>	•	1	>	>	>
	Python Programming	>	>	>	>	>		I	1	>	>	•	>	>	>
	Manufacturing Practices	>	>	~	1	>	1	>	I	>	>	•	>	>	>

4

CBCS
1
R2021
- CH -
B.TECH.

Engineering and

B.TECH	B.TECH. – CH – R2021 – CBCS											o attitute of	Centre for Academic		Sem Beyond
SEM	Subject	Pot	P02	PO3	P04	P05	PO6	P07	P08	P09	P010	P01	P012		PS02
	Probability and Statistics	>	>	ı		•	•		ı	•	•		in a	Arequ	>
	Process Calculations	>	>	>	>	>		ŀ	•	•	•		>	>	>
	Mechanical Operations	>	>	>	>	>		•	•	•	•		>	>	>
	Fluid Mechanics for Chemical Engineers	>	>	>	>	>	ı	•	•	ı	I	I	>	5	>
SEM III	Environmental Science and Engineering	>	۶.	>	>	1	>	>	>	>	>	ŀ	>	>	>
	Technical Analysis Laboratory	>	>	>	ı	ı	>	>	•	>	•	I	>	>	>
	Basics of Electrical and Electronics Engineering Laboratory	>	>	>			٠		a	1	•	a	>	>	>
	Partial Differential Equations	>	>		•		ŀ		•	4	I	I	>	>	>
	Chemical Engineering Thermodynamics - I	>	>	>	I	,	1	£.	I			1	l	>	>
	Engineering Materials	>	>	>		>	>	>	•	>	>	r	•	>	>
	Mass Transfer I	>	>	>	>		•		•	•	ŀ	•	>	>	>
SEMIV	Process Heat Transfer	>	~	>	>	>	F	>	•	>	>	>	>	>	>
	Fluid Mechanics Laboratory	>		>	×	•	4	ı	1	>	•	1	>	>	>
	Mechanical Operations Laboratory	>	•	>	>	I	ı			>	•	•	>	>	>
	Soft Skills – I	I	1	ŧ	ı	ı	,	•	ı	>	>	•	>	>	>
						Í									

ME

Department of Chemical Engineering KPR Institute of Engineering & Technology Arasur, Coimbatore - 641 407 Dr. S. Balasubramanian, M.Tech., Ph.D. Professor & Head

ŵ

ę

CBCS
R2021
- CH -
S.TECH.
0

APRIET Leern Beyond	
ering and resolution of the second and resolu	10

SEM	Subject	PO1	P02	P03	P04	POS	PO6	P07	PO8	P09	P010	P011	P012	PS01	PS02
	Computational Techniques	>	>		Ŀ	•	•	•	•	I	ı	Ł	×	>	>
	Chemical Engineering Thermodynamics It	>	>			>	I	ı	•	•	>	I	ı	>	>
	Mass Transfer - II	>	>	>		1	,	4	•	>	7	•	>	>	>
SEM V	Mass Transfer Laboratory	>	>	1	>	ı	1	•	•	>	I		>	>	'
	Heat Transfer Laboratory	>	>	e	>	,		ı	1	>	>		>	>	I
	Soft Skills II	ı	I	1		,	ŧ	•	•	>	>	4	•	•	1
	Chemical Reaction Engineering I	>	>	>.	>	I	ı		•	•	I	•	•	>	>
	Chemical Process Industries	>	>	>	ı	•	•	>	•	>	>	1	>	>	>
	Process Instrumentation, Dynamics and Control	>	>	>	I	>	t	•		1	•	•	•	>	>
SEM VI	Chemical Reaction Engineering Laboratory	ž	>	>	>	ı	ı	1			I	1		>	>
	Soft Skills - III	ı	ı			I	I	•	<	>	>	•		>	>
	Process Engineering Economics	>	>	>	>	I	>	>	*	>	>	>	>	>	>
	Chemical Reaction Engineering II	>	>	>	>	•		I	1	•	ł	>	>	>	>
SEM VII	Process Equipment Design	>	>	>	>	9	a		>	>	>	>	>	>	>
	Process Control Laboratory	>	>	>	•	>	ı	ı	ı	1	I	•	•	>	>
	Design and Simulation Laboratory	>	>	>	>	>		ι	т	I	•	>	>	>	>
	Project work Phase - I	>	>	>	>	×	*	>	>	>	>	>	>	>	>
SEM VIII	Project work Phase - II	>	>	>	>	>	>	>	>	>	>	>	>	>	>

Dr. S. Balasubramanian, M.Tech., Ph.D. Professor & Head Department of Chemical Engineering KPR Institute of Engineering & Technology Arasur, Coimbatore - 641 407

ø

CBCS
1
R2021
1
R
1
ECH.
E

												1000	00 (60)	0	1
ТЕСН. – СН -	3.TECH. – CH – R2021 – CBCS											10 stutten	Centre for Academic Academic Courses	chnology	
	Subject	P01	P02	P03	P04	POS	PO6	P07	P08	P09	P010	POI	P012 PS01	PS01	PS02
	Polymer Science and Engineering	>	>	I	>	•	>	>	1	•	1	•) '	>	>
	Chemical Metallurgy	>	>	>	•	>	>	,	•	•	•			>	>
VERTICAL	Fluidization Engineering	>	>					1	•	•	•	1	1	>	
-	Process Plant Utilities	>	>	•		>	>	>	>	>	>	•	•	>	>
	Industrial Safety	>	>	•	1	•	>	I	•	•		L	•	>	
	Pulp and Paper Technology	>	>	>	>	ı	•	•	•		•	•	1	>	
	Fertilizer Technology	>	>	•		>	•	1		•	•	1	1	>	`
	Biochemical Engineering	>	>	>	>	1	•	•	>	>	>	>	Ŀ	>	>
VERTICAL	Nanoscience and Nanotechnology	>	•	•	•	•	>	>	>	>			ł	>	>
=	Enzyme Engineering	>	>	>	>	ı	>	>	>		•	•	1	>	`
	Fermentation Engineering	>	>	>	>	,	F		>	>	>	•	>	>	>
	Drugs and Pharmaceutical Technology	>	>	>		>	•	•	>	>	>	ı	>	>	>
	Corrosion Engineering	>	>	>	>	>	>	•		1	ı	ı	•	>	>
	Petroleum Equipment Design	>	>	•	•		I	,		•		ı	•	>	>
VEDTICAL	Oil and Gas Engineering	>	>	•	,	•	•			•	•		•	>	>
	Supply Chain Management	>	>	•	1	E	•	>				•		>	>
	Petroleum Refining and Petrochemicals	>	>	ı	I	r	1	•			ı			>	>
	Piping and Instrumentation in Chemical Plants	>	>	>	1	I	•	•		•	•	I	•	>	>

Dr. S. Balasubramanian, M.Tech., Ph.D. Professor & Head Department of Chemical Engineering KPR institute of Engineering & Tech Arasur, Coimbatore - 641 40

2

CBCS
R2021
1
B
1
B.TECH.

	Subject	P01	P02	PO3	P04	PO5	PO6	P07	P08	604	P010	P011	P012	PS01	PS02
	General Aspects of Energy Manufacturing and Energy Audit	>	>	>	>	•	>	>	>	>	>	>	>	>	>
	Energy Efficiency in Electrical and Thermal Utilities	>	>	>	>	1	>	>	>	>	>	>	>	>	>
ÄL	Energy Performance Assessment for Equipment and Utility Systems	>	>	>	>	1	>	>	>	>	>	>	>	>	>
2	Bioenergy	>	>	>	>	1	>	>	>	>	>	>	>	>	>
	Renewable and Non-Renewable Energy Resources	>	>	>	>	•	>	>	>	>	>	>	>	>	>
	Hydrogen and Fuel Cell Technotogies	>	>	>	>	I	>	>	>	>	5	>	>	>	>
	Water Conservation and Management	>	>	ŧ		>	>	>	>	•		•	L	>	>
	Modern Separation Techniques	>	>	>	>	>		1	>	•	•	ŕ	•	>	>
VERTICAL	Wastewater Treatment	>	>	>	>	•	I	4	>	>	>	•	>	>	>
>	Waste Management	>	>	I	ı	I	>	I	1	1	4	•		>	>
	Risk and HAZOP Analysis	*	>	ŧ	ı		>	ŀ					•	>	>
4	Air Pollution, Monitoring and Control	>	>	>	>	>	I		>	ı	ı	•	ı	>	>
	Computer Applications in Chemical Engineering	>	>	>	I	>	I	I	I	I	>	>	>	>	>
	Artificial Intelligence in Chemical Engineering	>	>	>	I	>	1	T	1	1	I	1	,	>	>
	Optimization of Chemical Process	>	>	>	T	>		1	I	I	I	ı	>	>	>
VERTICAL	Computational Fluid Dynamics in Process industries	>	>	>	>	>	1	ŀ	1	I	>	1	4	>	>
	Process Modeling and Simulation	>	>	>		>	1			1	1	t	>	>	>
V	loT in Chemical Engineering	>	>	>	>	•	1	•	1	•	•	•	,	>	>

Dr. S. Balasubramanian, M. Tech., Ph.D. Professor & Head Department of Chemical Engineering KPR Institute of Engineering & Technology Arasur, Coimbatore - 641 407

œ

B.TECH. CHEMICAL ENGINEERING

REGULATIONS - 2021

For the students admitted 2021 onwards

CHOICE BASED CREDIT SYSTEM

CURRICULUM FOR I - VIII SEMESTERS

SEMESTER I

SI.NO.	COURSE CODE	COURSE TITLE	CATEGORY	L	т	Ρ	J	c
		THEORY COURSES	5					
1	U21MA101	Calculus and Differential Equations	BSC	3	1	0	0	4
2	U21MEG05	Basics of Mechanical Engineering	ESC	3	0	Q	0	3
		THEORY COURSE WITH LABORAT THEORY COURSE WITH PROJE			7			
3	U21EN101	English for Technologists	HSMC	1	0	2	0	2
4	U21PH101	Engineering Physics	BSC	2	0	2	0	3
5	U21CY101	Engineering Chemistry	BSC	2	0	2	0	3
6	U21CSG01	Problem Solving and C Programming	ESC	2	0	2	0	3
		LABORATORY COUR	RSES					
7	U21MEG01	EngIneering Graphics	ESC	0	0	4	0	2
		MANDATORY NON-CRI COURSES	EDIT					
8	U21MYC01	Induction program	MNC		Tł	nree '	Wee	ks
		TOTAL		13	1	12	0	20

SI.NO.	COURSE CODE	COURSE TITLE	CATEGORY	L	Т	P	J	c
		THEORY COURSE	S		_			
1	U21MA201	Laplace Transforms and Complex Variables	BSC	3	1	0	0	4
2	U21PH201	Materials Science	BSC	2	0	0	0	2
3	U21EEG01	Basics of Electrical and Electronics Engineering	ESC	3	0	0	0	3
4	U21CH201	Introduction to Chemical Engineering	PCC	3	0	0	0	3
		THEORY COURSE WITH LABORA THEORY COURSE WITH PROJI			7		10	
5	U21EN201	Personality Enhancement	HSMC	1	0	2	0	2
6	U21CY202	Chemistry for Technologists	BSC	2	0	2	0	3
7	U21CSG02	Python Programming	ESC	2	0	2	0.	3
		LABORATORY COUR	SES					
8	U21MEG02	Manufacturing Practices	ESC	0	0	4	0	2
		MANDATORY NON-CREDIT	COURSES			_		
9	U21MYC02	Environmental Sciences	Dr ^{MNC} Bala	sub	afr	afia	rρ	MOR
			TOTAL	FIZ	fets	ot®	He	ad2

SEMESTER II

Department of Chemical Engineering KPR Institute of Engineering & Technology Arasur, Coimbatore - 641 407

SEMESTER III

		SEMESTER III	CATEGORY	ademi	c)	Sto	am Ba	
SI.NO.	COURSE CODE	COURSE TITLE	CATEGORY	ΨL	Y.	P	J	C
		THEORY COURS	ES V	+ Coin	100			
1	U21MAG01	Probability and Statistics	BSC	3	1	0	0	4
2	U21CH301	Process Calculations	PCC	3	1	0	0	4
3	U21CH302	Fluid Mechanics for Chemical Engineers	PCC	3	1	0	0	4
4	U21CH303	Mechanical Operations	PCC	3	0	0	0	3
		THEORY COURSE WITH LABO THEORY COURSE WITH PR	RATORY COMP	PONE NEN	NT / T	1		
5	U21CH304	Environmental Science and Engineering	ESC	2	0	0	2	3
	LABORATORY C	OURSES / LABORATORY COURS	SE WITH PROJE	CT C	OM	PON	ENT	•
6	U21CH305	Technical Analysis Laboratory	PCC	0	0	4	0	2
7	U21CH306	Basic Electrical and Electronics Engineering Laboratory	ESC	0	0	4	0	2
		MANDATORY NON-CRED	IT COURSES					
8	U21MYC03	Essence of Indian Traditional Knowledge	MNC	1	0	0	0	0
		TOTAL		15	3	8	2	22

SEMESTER IV

SI.NO.	COURSE CODE	COURSE TITLE	CATEGORY	L	Т	Ρ	J	С		
		THEORY COURSE	S							
1	U21MA402	Partial Differential Equations	BSC	2	0	0	0	2		
2	U21CH401	Chemical Engineering Thermodynamics I	ESC	2	1	0	0	3		
3	U21CH402	Engineering Materials	PCC	3	0	0	0	3		
4	U21CH403	Mass Transfer I	PCC	3	1	0	0	4		
5		Open Elective - I	OEC	3	0	0	0	3		
		THEORY COURSE WITH LABOR THEORY COURSE WITH PRO				/ 				
6	U21CH404	Process Heat Transfer	PCC	2	1	0	2	4		
	LABORATORY COURSES / LABORATORY COURSE WITH PROJECT COMPONENT									
7	U21CH405	Fluid Mechanics Laboratory	PCC	0	0	2	0	1		
8	U21CH406	Mechanical Operations Laboratory	PCC	0	0	2	0	1		
9	U21SSG01	Soft Skills - I	HSMC	0	0	2	0	1		
		MANDATORY NON-CREDIT	COURSES							
10	U21MYC04	Indian Constitution	MNC	1	0	0	0	0		
			TOTAL	16	3	6	2	22		
					1.	Not	/			

B.TECH.	. – CH – R2021 – Cë	SEMESTER V	Institute of	Cent Aca	re f den ours	nic L	PRelogy	yond			
SI.NO.	COURSE CODE	COURSE TITLE	CATEGOR		T	P	J	C			
		THEORY COUR	RSES	~	Unin						
1	U21MA502	Computational Techniques	BSC	2	0	0	0	2			
2	U21CH501	Chemical Engineering Thermodynamics II	PCC	3	1	0	0	4			
3		Professional Elective - I	PEC	3	0	0	0	3			
4		Professional Elective - If	PEC	3	0	0	0	3			
5		Open Elective - II	OEC	3	0	0	0	3			
	THEORY COURSE WITH LABORATORY COMPONENT / THEORY COURSE WITH PROJECT COMPONENT										
6	U21CH502	Mass Transfer II	PCC	2	1	0	2	4			
	LABORATORY	COURSES / LABORATORY CO	URSE WITH PROJ	ECT	co	MPC	DNE	T			
7	U21CH503	Mass Transfer Laboratory	PCC	0	0	4	ō	2			
8	U21CH504	Heat Transfer Laboratory	PCC	0	0	4	0	2			
9	U21SSG02	Soft Skills - II	HSMC	0	0	2	0	1			
		MANDATORY NON-CREI	DIT COURSES								
10	U21MYC05	Cyber Security Essentials	MNC	1	0	0	0	0			
			TOTAL	17	2	10	2	24			

SEMESTER V

neering

SEMESTER VI

SI.NO.	COURSE CODE	COURSE TITLE	CATEGORY	L	T	P	J	C
		THEORY COURSE	S					
1	U21CH601	Chemical Reaction Engineering I	PCC	3	1	0	0	4
2	U21CH602	Chemical Process Industries	PCC	3	0	0	0	3
3	U21CH603	Process Instrumentation, Dynamics and Control	PCC	3	0	0	0	3
4		Professional Elective - III	PEC	3	0	0	0	3
5		Professional Elective - IV	PEC	3	0	0	0	3
6		Open Elective - III	OEC	3	0	0	0	3
	LABORATORY	COURSES / LABORATORY COUR	SE WITH PROJE	сто	:OM	PO	NEN	T
7	U21CH604	Chemical Reaction Engineering Laboratory	PCC	0	0	2	0	1
8	U21SSG03	Soft Skills - III	HSMC	0	0	2	0	1
9	U21MYC06	Introduction to UNSDGs: An Interrogative Approach	MNC	1	0	0	0	0
			Dr STOTAL	.19	inte	nta	n0 N	12

Ph.D. Dr. S. Balasubramaniany Maec Professor & Head

Department of Chemical Engineering KPR Institute of Engineering & Technology Arasur, Coimbatore - 641 407

SI.NO.	COURSE CODE	COURSE TITLE	CATEGORY	* 60	into	P	J	c		
		THEORY COURS	ES							
1	U21CH701	Chemical Reaction Engineering II	PCC	3	0	0	0	3		
2	U21CH702	Process Engineering Economics	HSMC	3	0	0	0	3		
3		Professional Elective – V	PEC	3	0	0	0	3		
4		Professional Elective - VI	PEC	3	0	0	0	3		
5		Open Elective - IV	OEC	3	0	0	0	3		
	THEORY COURSE WITH LABORATORY COMPONENT / THEORY COURSE WITH PROJECT COMPONENT									
6	U21CH703	Process Equipment Design	PCC	2	0	0	2	3		
	LABORATORY COURSES / LABORATORY COURSE WITH PROJECT COMPONENT									
7	U21CH704	Process Control Laboratory	PCC	0	0	2	0	1		
8	U21CH705	Design and Simulation Laboratory	PCC	0	0	2	0	1		
9	U21CH706	Project work Phase - I	EEC	0	0	0	4	2		
1			TOTAL	17	1	4	6	22		

SEMESTER VII

SEMESTER VIII

SI.NO.	COURSE CODE	COURSE TITLE	CATEGORY	L	Т	Ρ	J	C
1	U21CH801	Project work Phase - II	EEC	0	0	0	20	10
			TOTAL	0	0	0	20	10

INDUSTRIAL TRAINING / INTERNSHIP

SI.NO.	COURSE CODE	COURSE TITLE	CATEGORY	L	Т	Ρ	J	C
1	U21CHI01	Industrial Training / Internship *	EEC	0	0	0	0	2
	1		TOTAL	0	0	0	0	2

*Four Weeks during any semester vacation from III to VI Semester

eerino

centre for

Academ

nstitute or

B.TECH. - CH - R2021 - CBCS

NCC CREDIT COURSES:

SI.NO.	COURSE CODE	COURSE TITLE	CATEGORY	L	Т	P	J	c
1	U21NCC01	NCC Credit Course Level I	-	1	0	2	0	2
2	U21NCC02	NCC Credit Course Level II	-	1	0	2	0	2
3	U21NCC03	NCC Credit Course Level III	-	1	0	2	0	2
4	U21NCC04	NCC Credit Course Level IV	-	2	0	2	0	3
5	U21NCC05	NCC Credit Course Level V	-	1	0	2	0	. 2
6	U21NCC06	NCC Credit Course Level VI	-	2	0	2	0	3
				8	-	6	-	1

TOTAL CREDITS: 165

Dr. S. Balasubramanian, M. Tech., Ph.D. **Professor & Head** Department of Chemical Engineering KPR Institute of Engineering & Technology Arasur, Coimbatore - 641 407

B.TECH. - CH - R2021 - CBCS

ŝ
1
•
-75
×
æ
ш
>
S
11
S
Ϋ́.
5
ō
Q
S
ŰŰ
5
F
<u>0</u>
щ
. <u></u> .
ш
•
7
5
\simeq
Ś
- Ŵ
Ш
LL.
Ō
Ř
ā.

Vertical I Design & Manufacture	Vertical II Bioprocess Engineering	Vertical III Oll, Gas & Petroleum	Vertical IV Energy Systems Engineering	Vertical V Environmental Engineering	Vertical VI Computational Chemical Engineering
Polymer Science Engineering	Fertilizer Technology	Corrosion Engineering	General Aspects of Energy Manufacturing and Energy Audit	Water conservation and management	Computer Applications in Chemical Engineering
Chemical Metallurgy	Biochemical Engineering	Petroleum Equipment Design	Energy Efficiency in Electrical and Thermal Utilities	Modern separation techniques	Artificial Intelligence in Chemical Engineering
Fluidization Engineering	Nanoscience and Nanotechnology	Oil and Gas Engineering	Energy Performance Assessment for Equipment and Utility Systems	Wastewater Freatment	Optimization of Chemical Process
Process Plant Utilities	Enzyme Engineering	Supply Chain Management	Bioenergy	Waste Management	Computational Fluid Dynamics in Process Industries
Industrial Safety	Fermentation Engineering	Petroleum Refining and Petrochemicals	Renewable and Non- Renewable Energy Resources	Risk and HAZOP analysis	Process Modeling and Simulation
Pulp and Paper Technology	Drugs and Pharmaceutical Technology	Piping and Instrumentation in Chemical Plants	Hydrogen and Fuel Cell Technologies	Air Pollution, Monitoring and Control	loT in Chemical Engineering

Registration of Professional Elective Courses from Verticals:

Professional Elective Courses will be registered in Semesters V to VII. These courses are listed in groups called verticals that represent a particular area of specialization / diversified group. Students are permitted to choose all the Professional Electives from a particular vertical or from different verticals.

The registration of courses for B.E./B.Tech (Honours) or Minor degree shall be done from Semester V to VII.

21 - CBCS PROFESSIONAL ELECTIVE COURSES: VERTICALS

VERTICAL 1: DESIGN & MANUFACTURE

SI.NO.	COURSE CODE	COURSE TITLE	CATEGORY	L	т	Р	J	с
1	U21CHP01	Polymer Science Engineering	PEC	3	0	0	0	3
2	U21CHP02	Chemical Metallurgy	PEC	3	0	0	0	3
3	U21CHP03	FluidIzation Engineering	PEC	3	0	0	0	3
4	U21CHP04	Process Plant Utilities	PEC	3	0	0	0	3
5	U21CHP05	Industrial Safety	PEC	3	0	0	0	3
6	U21CHP06	Pulp and Paper Technology	PEC	3	0	0	0	3

VERTICAL 2: BIOPROCESS ENGINEERING

SI.NO.	COURSE CODE	COURSE TITLE	CATEGORY	L	т	P	J	C
1	U21CHP07	Fertilizer Technology	PEC	3	0	0	0	3
2	U21CHP08	Biochemical Engineering	PEC	3	0	0	0	3
3	U21CHP09	Nanoscience and Nanotechnology	PEC	3	0	0	0	3
4	U21CHP10	Enzyme Engineering	PEC	3	0	0	0	3
5	U21CHP11	Fermentation Engineering	PEC	3	0	0	0	3
6	U21CHP12	Drugs and Pharmaceutical Technology	PEC	3	0	0	0	3

VERTICAL 3: OIL, GAS & PETROLEUM

SI,NO.	COURSE CODE	COURSE TITLE	CATEGORY	L	T	P	J	C	
1	U21CHP13	Corrosion Engineering	PEC	3	0	0	0	3	
2	U21CHP14	Petroleum Equipment Design	PEC	3	0	0	0	3	
3	U21CHP15	Oil and Gas Englneering	PEC	3	0	0	0	3	
4	U21CHP16	Supply Chain Management	PEC	3	0	0	0	3	
5	U21CHP17	Petroleum Refining and Petrochemicals	PEC	3	0	0	0	3	(m)
6	U21CHP18	Piping and Instrumentation in Chemical Plants	DP.ES. Bala						h., P
			Departm		fess of Ch				eerin
		15	KPR Institu						

B.TECH	1. – CH – R202	1 – CBCS	stitute	Aca	tre fo demi	Lite	RI	
		VERTICAL 4: ENERGY SYSTEMS EN		Co	urse	5	/	
SI.NO.	COURSE	COURSE TITLE	CATEGORY	* Coi	mbat	P	J	c
1	U21CHP19	General Aspects of Energy Manufacturing and Energy Audit	PEC	3	0	0	0	3
2	U21CHP20	Energy Efficiency in Electrical and Thermal Utilities	PEC	3	0	0	0	3
3	U21CHP21	Energy Performance Assessment for Equipment and Utility Systems	PEC	3	0	0	0	3
4	U21CHP22	Bioenergy	PEC	3	0	0	0	3
5	U21CHP23	Renewable and Non- Renewable Energy Resources	PEC	3	0	0	0	3
6	U21CHP24	Hydrogen and Fuel Cell Technologies	PEC	3	0	0	0	3

aineerina

VERTICAL 5: ENVIRONMENTAL ENGINEERING

SI.NO.	COURSE CODE	COURSE TITLE	CATEGORY	L	т	Ρ	J	C
1	U21CHP25	Water conservation and management	PEC	3	0	0	0	3
2	U21CHP26	Modern separation techniques	PEC	3	0	0	0	3
3	U21CHP27	Wastewater Treatment	PEC	3	0	0	0	3
4	U21CHP28	Waste Management	PEC	3	0	0	0	3
5	U21CHP29	Risk and HAZOP analysis	PEC	3	0	0	0	3
6	U21CHP30	Air Pollution Monitoring and Control	PEC	3	0	0	0	3

VERTICAL 6: COMPUTATIONAL CHEMICAL ENGINEERING

SI.NO.	COURSE CODE	COURSE TITLE	CATEGORY	L	T	P	J	С
1	U21CHP31	Computer Applications in Chemical Engineering	PEC	3	0	0	0	3
2	U21CHP32	Artificial Intelligence in Chemical Engineering	PEC	3	0	0	0	3
3	U21CHP33	Optimization of Chemical Process	PEC	3	0	0	0	3
4	U21CHP34	Computational Fluid Dynamics in Process Industries	PEC	3	0	0	0	3
5	U21CHP35	Process Modeling and Simulation	PEC	3	0	0	0	3
6	U21CHP36	IoT in Chemical Engineering	Dr. S. Balas	subr	arfa	niân	. 191.	5eT

, Ph.D. Professor & Head Department of Chemical Engineering KPR Institute of Engineering & Technology Arasur, Coimbatore - 641 407

OPEN ELECTIVES

(Students shall choose the open elective courses, such that the course contents are not similar to any other course contents/title under other course categories).

OPEN ELECTIVES - I (SEMESTER: IV)

SI.NO.		COURSE TITLE	CATEGORY	L	т	Р	ſ	с
1	U21CHX01	Introduction to Food Processing Techniques	OEC	3	0	0	0	3
2	U21CHX02	Energy Conservation in Process Industries	OEC	3	0	0	0	3

OPEN ELECTIVES - II (SEMESTER: V)

SI.NO.	COURSE CODE	COURSE TITLE	CATEGORY	L	т	P	J	с
1	U21CHX03	Environmental Impact Assessment	OEC	З	0	0	0	3
2	U21CHX04	Industrial Wastewater Treatment	OEC	3	0	0	0	3

OPEN ELECTIVES - III (SEMESTER: VI)

SI.NO.		COURSE TITLE	CATEGORY	L	т	P	J	с
1	U21CHX05	Industrial Management	OEC	3	0	0	0	3
2	U21CHX06	Membrane Technology	OEC	3	0	0	0	3

OPEN ELECTIVES - II (SEMESTER: VII)

SI.NO.	COURSE	COURSE TITLE	CATEGORY	L	т	P	J	С
1	U21CHX07	Food Safety and Quality Regulations	OEC	3	0	0	0	3
2	U21CHX08	Safety and Hazard Management in Process Industries	OEC	3	0	0	0	3

ore or Engineering an Countration (511)

B.TECH. - CH - R2021 - CBCS

Scheme of Credit distribution – Summary

					Credi	ts/Sem	ester		* Coin	b Credits
S.No	Stream	I	Ш	III	IV	۷	VI	VII	VIII	
1.	Humanities and Social Sciences including Management (HSMC)	2	2	-	1	1	1	3	-	10
2.	Basic Science Courses (BSC)	10	9	4	2	2	-	-	-	27
3.	Engineering Science Courses (ESC)	8	8	5	3	-	-	-	-	24
4.	Professional Core Courses (PCC)	-	3	13	13	12	11	8	-	60
5.	Professional Elective Courses (PEC)	-	•	-	-	6	6	6	-	18
6.	Open Elective Courses (OEC)	-	-	-	3	3	3	3	-	12
7.	Employability Enhancement Courses (EEC)	-	-	-	-	-	-	2	10	12
8.	Industrial Training/ Internship	-	-	-	-	-	-	-	2	2
9.	Mandatory Non-Credit Course (MNC)	1	1	1	1	1	1	-	-	•
	Total	20	22	22	22	24	21	22	12	165

He

H&Ad Centre for Academic Courses KPR Institute of Engineering and Technology Coimbatore - 641 407

e ch	SEMESTER I	E C	Cour	ses	109	
U21MA101	CALCULUS AND DIFFERENTIAL EQUATIONS	L	Cate	P	, BSC	C
		3	1	0	0	4

PRE-REQUISITES:

Nil

COURSE OBJECTIVES:

- To understand the concepts of matrices and calculus which will enable them to model and analyze physical phenomena involving continuous change
- To understand the methodologies involved in solving problems related to fundamental principles of calculus
- To develop confidence to model mathematical pattern and give appropriate solutions

COURSE OUTCOMES:

Upon completion of the course, the student will be able to

- **CO1:** Apply the knowledge of matrices with the concepts of eigenvalues to study their problems in core areas (Apply)
- **CO2:** Apply the basic techniques and theorems of functions of several variables in other areas of mathematics (Apply)
- **CO3:** Analyze the triple integrals techniques over a region in two dimensional and three-dimensional geometry (Apply)
- CO4: Apply basic concepts of integration to evaluate line, surface and volume integrals (Apply)
- **CO5:** Solve basic application problems described by second and higher order linear differential equations with constant coefficients (Understand)

Correlation	n levels	s:	1: Sli	ght (Lo	w)	2: Moderate (Medium)			dium)) 3: Substantial (High)					
CO5	3	2	-	-	-	-	-	-	-	-	-	-	1	1	
CO4	2	2	-	-	-	•	-	-	-	-	-		1	1	
CO3	2	2	-	-	-	-	-	-	-	-	-	-	1	1	
CO2	3	2	-	-	-	-	-	-	-	•	-	-	1	1	
CO1	3	2	•	-	-	-	-	-	-	•	-	1	1	1	
POs COs	P01	PO2	PO3	PO4	PO5	P06	P07	P08	PO9	PO10	P011	PO12	PSO1	PSO	

CO-PO MAPPING:

Dr. S. Balasubramanian, M.Tech., Ph.D. Professor & Head Department of Chemical Engineering KPR Institute of Engineering & Technology Arasur, Coimbatore - 641 407

ineerir

Centre for

SYLLABU Unit I	IS: MATRICES 9+3
-	es and eigenvectors – Properties (without proof) – Cayley Hamilton theorem (without proof) lization using orthogonal transformation – Applications
UNIT II	FUNCTIONS OF SEVERAL VARIABLES 9 + 3
	ivatives – Total derivative – Jacobians – Taylor's series expansion – Extreme values of of two variables – Lagrange multipliers method
UNIT III	MULTIPLE INTEGRALS 9+3
Double int	egrals – Change of order of integration – Triple integrals – Applications in area and volume
	LINE AND SURFACE INTEGRALS 9+3
-	als – Surface integrals – Green's theorem in a plane – Gauss divergence theorem – Stokes' excluding proofs)
UNIT V	ORDINARY DIFFERENTIAL EQUATIONS 9 + 3
	nd higher order linear differential equations with constant coefficients – Variable coefficients nuchy equation – Legendre's equation – Method of variation of parameters – Applications
Contact P	Periods:
Lecture:	45 Periods Tutorial: 15 Periods Practical: - Periods Project - Periods
	Total 60 Periods

TEXT BOOKS:

- 1. Erwin Kreyszig, "Advanced Engineering Mathematics", 10th edition, Wiley India Pvt Ltd, New Delhi, 2018.
- Grewal B S, "Higher Engineering Mathematics", 44th edition, Khanna Publishers, New Delhi, 2017.

REFERENCES:

.

- 1. Bali N P and Dr Manish Goyal, "A text book of Engineering Mathematics", 12th edition, Laxmi Publications, 2016.
- Thomas G B and Finney R L, "Calculus and Analytic Geometry", 14th edition, Pearson Education India, 2018.
- 3. Maurice D Weir, Joel Hass and Christopher Heil, "Thomas Calculus", 14th edition, Pearson Education, India, 2018.
- James Stewart, "Calculus: Early Transcendental", 7th edition, Cengage Learning, New Delhi, Dr. S. Balasubramanian, M.Tech., Ph.D. Professor & Head

Department of Chemical Engineering KPR Institute of Engineering & Technology Arasur, Coimbatore - 641 407

EVALUATION PATTERN:

.

	Contir	uous Internal Ass	sessments			
Assessme (100 Mark	Fiel Company					
Individual Assignment / Seminar / MCQ	Written Test	Individual Assignment / Seminar / MCQ		Total Internal Assessments	End Semester Examinations	
40	60	40	60	200	100	
	Тс	otal		40	60	
				10	0	

*Role Play / Group Discussions / Debates / Oral Presentations / Poster Presentations / Technical presentations can also be provided. Course Coordinator can choose any one / two components based on the nature of the course

Engineer

Centre foi

	CENECTED I	adem ourse	s /	hnolo	na Biay dia	
U21MEG05	BASICS OF MECHANICAL ENGINEERING	mbatot	T	óry: P	ESC J	c
		3	0	0	0	3

PRE-REQUISITES:

Nil

COURSE OBJECTIVES:

- To familiarize with basic mechanical elements and power plants
- To understand the principles of IC Engines, refrigeration & air conditioning •
- To know different types of manufacturing processes, industrial safety and computer applications in mechanical engineering

COURSE OUTCOMES:

Upon completion of the course, the student will be able to

- CO1: Recognize various mechanical elements and list out the applications and functions (Understand)
- CO2: Understand the construction and working of power plants and its components (Understand)
- CO3: Explain the working of an IC engine and a RAC system (Understand)
- CO4: Discuss about traditional and additive manufacturing processes (Understand)
- CO5: Recall various safety requirements and software required for mechanical engineering (Understand)

Correlation	n level:	s:	1: Slig	ght (Lo	w)	2: M	oderat	e (Me	dium)		3: Sub	stantia	ıl (High)
CO5	3	1	-	-	-	1	-	-		-	-	1	1	1
CO4	3	1	-	-	-	1	-	-	-	-	-	1	1	1
CO3	3	2	-	-	-	1	-	-	-	-	-	1	1	1
CO2	3	2	-	-	-	1	-	-	-	-	•	1	1	1
CO1	3	2	-	•	-	1	-	-	*	•	-	1	1	1
POs COs	P01	P02	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	P011	PO12	PSO1	PSO

CO-PO MAPPING:

SYLLABUS:

BASIC MECHANICAL ELEMENTS UNIT I

Basic Concepts and demonstration: Bearings - Gears - Belt drives - Chain drives - Cable drives chain block - Conveyers - Shafts - Keys - Spline shafts - Springs - Fasteners - Screws - Bolts -Nuts and their specifications - Fundamental Hydraulics and Pneumatics - Valves and Cylinders -FRL units.

Dr. S. Balasubramanian, M.Tech., Ph.D. **Professor & Head** Department of Chemical Engineering KPR Institute of Engineering & Technology Arasur, Coimbatore - 641 407

9

Q

UNIT II POWER GENERATION AND DISTRIBUTION

Classification of power Plants - Working principle of steam - Gas - Diesel - Hydroelectric and Nuclear Power plants - Renewable energy - Solar - Wind - Tidal - OTEC - Boilers - Turbines and Pumps - Working and classification.

UNIT III IC ENGINES AND RAC

IC Engine as power plant - Petrol and Diesel Engines - Four stroke and two stroke cycles - Working and Comparison - Refrigeration and Air Conditioning - Refrigerants - Vapour compression and absorption system - Types of refrigeration and AC systems - Applications.

UNIT IV MANUFACTURING PROCESS

Principles of casting process - Metal rolling process - Introduction to CNC machines - Laser Cutting and EDM process - Metal joining process - Welding and Soldering Process - Introduction to 3D printing and Rapid prototyping.

INDUSTRIAL ENGINEERING

Introduction to safety engineering - Evolution of Safety - Improvements Required - Safety Organization - Safety Functions - Workplace Operations Requiring Safety - Safety Benefits -Software in Mechanical Industry - Introduction to Modelling and Analysis software - Basic Concepts and Application of IoT to industrial processes.

Contact Periods:

Lecture:	45 Periods	Tutorial	- Periods	Practical	- Periods	Project	- Periods
						Total:	45 Periods

TEXT BOOKS:

- 1. Basant Agarwal and C.M. Agarwal, "Basics of Mechanical Engineering", 3rd Edition, Wiley India Pvt. Ltd, New Delhi, 2018.
- Venugopal K. and Prabhu Raja V., "Basic Mechanical Engineering", 1st Edition, Anuradha Publishers, Kumbakonam, 2010.

REFERENCES:

- 1. Palanikumar, K. Basic Mechanical Englneering, 1st Edition, ARS Publications, 2010.
- 2. P.N. Rao., "Manufacturing Technology Vol. 1", 1* Edition, Tata McGraw Hill Education India Pvt Ltd, 2013.
- 3. Mikell P. Groover, "Automation, Production Systems, and Computer-Integrated Manufacturing, 4th Edition, Pearson, 2014.
- 4. ShanthaKumar SRJ., "Basic Mechanical Engineering" 1st Edition Hi-tech Publications, M.Tech., Ph.D. Professor & Head Maviladuthurai, 2010.
- 5. Alasdair Gilchrist., "Industry 4.0: The Industrial Internet of Things", IBeautimexpression and Engineering KPR Institute of Engineering & Technology

9

9

9

EVALUATION PATTERN:

	Contin	uous Internal As:	sessments			
Assessme (100 Mark	End Semester					
Individual Assignment / Seminar / MCQ	Written Test	Individual Assignment / Seminar / MCQ		Total Internal Assessments	Examinations	
40	60	40	60	200	100	
	Тс	otal		40	60	
				10	0	

*Role Play / Group Discussions / Debates / Oral Presentations / Poster Presentations / Technical presentations can also be provided. Course Coordinator can choose any one / two components based on the nature of the course

SEMESTER I	
------------	--

gineerin

Centre for Academic

	SEMESTER I	(a)	Coui	rses	109	/	
		10	im	ate	jøry:	HSN	IC
U21EN101	ENGLISH FOR TECHNOLOGISTS		L	Т	Ρ	J	C
			1	0	2	0	2

PRE-REQUISITES:

Nil

COURSE OBJECTIVES:

- To infer and interpret the meaning of Technical, Business, Social and Academic contexts. •
- To enhance the listening skills and facilitate effective pronunciation.
- To make effective presentation and conversation in technical and professional environment.

COURSE OUTCOMES:

Upon completion of the course, the student will be able to

CO1: Comprehend language and learn strategies for error-free communication (Understand)

CO2: Improve speaking skills in academic and social contexts (Apply)

CO3: Enhance both reading and writing skills to excel in professional career (Analyse)

CO4: Evaluate different perspectives on a topic (Analyse)

CO5: Develop listening skills to understand complex business communication in a variety of global English accents through Personality Development (Understand)

CO-PO MAPPING:

POs Cos	PO1	P02	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	-	-	•	-	-	-	-	-	-	3	-	1	1	1
CO2	-	-	-	-	-		-	-	2	3	-	-	1	1
CO3	-	-	-	-	-	-		-	2	3	-	1	1	1
CO4	-	-	-	-	-	-	-	-	2	3	•	-	1	1
CO5	-	-	+		-	-	-	2	-	3	-	1	1	1
Correlation	n level	s:	1: Sli	ght (Lo	w)	2: M	oderat	e (Meo	dium)		3: Sub	stantia	ıl (High	ı)

SYLLABUS:

UNIT I SUBJECTIVE INTROSPECTION

Module:1 Vocabulary Building

Activity: Word Puzzles, Snappy words, Word Sleuthing

Module:2 Introducing and Sharing Information

Activity: Get to know oneself, Introducing Peer Members

Module:3 Opinion Paragraph

Activity: Note making, analyzing and writing a review

Dr. S. Balasubramanian, M.Tech., Ph.D. Professor & Head Department of Chemical Engineering KPR Institute of Engineering & Technology Arasur, Coimbatore - 641 407

9

	9
UNIT II CAREER ENHANCEMENT	9
Module:4 Reading Comprehension	
Activity: Reading Newspaper articles/Blogs, Sentence completion	
Module:5E-mail Communication	
Activity: Drafting personal and professional emails	
Module:6 Career Profiling	
Activity: Resume Writing & Digital Profiling	
UNIT III LANGUAGE ADEPTNESS	9
Module:7 Rewriting passages	
Activity: Conversion of voices & Rephrasing Articles	
Module:8 Enhancing Pronunciation skills	
Activity: Listening to short technical Reels and reproducing it	
Module:9 Making Conversations	
Activity: Role play & Narrating Incidents	
UNIT IV TECHNICAL WRITING	9
Module:10 Spotting Errors	
Activity: Proof reading, Rewriting sentences	
Module:11 Data interpretation	
Activity: Interpretation of Graphics/Charts/Graphs	
Module:12 Expository Writing	
Activity: Picture Inference, Captions for Posters& Products	
UNIT V LANGUAGE UPSKILLING	9
Module:13 Listening for Specific Information	
Activity: TED talks/Announcement/Documentaries	
Module:14 Presentation	
Activity: Extempore & Persuasive Speech	
Module:15 Team Communication	
Activity: Team building activities, Group Discussion	

LIST OF EXERCISES

- 1. Introducing oneself
- 2. Role play
- 3. Listening to short technical Reels
- 4. Listening to TED Talks/ Announcements/ Documentaries
- 5. Presentation
- 6. Group Discussion

Contact Periods:

Lecture: 1	5 P	eriods
------------	-----	--------

Tutorial: - Periods Practical: 30 Periods

Project: – Periods

TEXT BOOKS:

- 1. Ashraf Rizvi, "Effective Technical Communication", 2nd Edition, Mc Graw Hill. India 2017.
- 2. Rod Ellis, "English for Engineers & Technologists", Vol. II: (English for Engineers and Technologist: A Skills Approach). 2nd Edition, Orient Black Swan, 1990.

REFERENCES:

- 1. Raymond Murphy, "Intermediate English Grammar", 2nd Edition, Cambridge University Press, 2009.
- 2. Thomas L Means, "English and Communication for Colleges", 4th Edition, Cengage 2017.
- 3. Using English: "A Coursebook for Undergraduate Engineers and Technologists", 1st Edition, Orient Black Swan, 2017.

EVALUATION PATTERN:

Conti	nuous Inter	nal Assessments	End Semester Examinations	
Assessment I (Theory) (100 Marks)		Assessment (Practical) (100 Marks)		
Indivldual Assignment / Seminar / MCQ	Written Test	Evaluation of Laboratory Observation, Record (Rubrics Based Assessments)	Test	Practical Examinations (Examinations will be conducted for 100 Marks)
40	60	75	25	
25	25 25			50
50				50
		Tota	al: 100	

	at Engineering in
21 – CBCS SEMESTER I	Centre for Academic
	* Category: BSC
	2 0 2 0 3

PRE-REQUISITES:

U21PH101

Nil

COURSE OBJECTIVES:

- · To understand the fundamental principles of laser and fibre optics with their applications
- To acquire the knowledge of ultrasonic waves, thermal conductivity and properties of liquids
- To understand the concepts of crystals

COURSE OUTCOMES:

Upon completion of the course, the student will be able to

CO1: Demonstrate the types of laser for various industrial and medical applications (Understand)

- **CO2:** Apply the concepts of fibre optics in engineering (Understand)
- **CO3:** Understand the production methods of ultrasonic waves and uses in engineering and medicine (Understand)
- **CO4:** Apply the concepts of thermal conductivity in hybrid vehicles and viscosity of liquids in engineering applications (Understand)
- CO5: Explain the basic concepts of crystals and its growth techniques (Understand)

CO-PO MAPPING:

POs COs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	P S O1	PSO2
CO1	3	2	1	-	-	-	-	-	*	-	-	-	1	1
CO2	3	2	1	-	-	-	-	-	-	-	-	-	1	1
CO3	3	2	1	-	•	-	-	-	-	-	-	-	1	1
CO4	3	2	1	-	-	-	-	-	-	-	-	-	1	1
CO5	3	2	1	-	-	-	-	•	•	-	-	-	1	1
Correlation	n level:	S:	1: Sli	ght (Lo	w)	2: M	oderat	e (Me	dium)		3: Sut	ostantia	al (High	1)

SYLLABUS:

UNIT I LASER

Laser characteristics – Spontaneous and stimulated emission – Pumping methods – CO₂ laser – Semiconductor laser – Material Processing – Selective laser Sintering – Hologram – Medical applications (Opthalmology)

Dr. S. Balasubramanian, M.Tech., Ph.D. Professor & Head Department of Chemical Engineering KPR Institute of Engineering & Technology Arasur, Coimbatore - 641 407

6

UNIT II FIBER OPTICS

Total internal reflection – Numerical aperture and acceptance angle – Classification of optical fibers (Materials, modes and refractive index profile) – Fiber optical communication system – Displacement and temperature sensor – Medical Endoscopy

UNIT III ULTRASONICS

Properties of ultrasonic waves – Piezoelecrtic generator – Acoustic grating – Applications of ultrasonics in industry– SONAR – NDT – Ultrasonic scanning methods – Fetal heart movement

UNIT IV THERMAL PHYSICS AND PROPERTIES OF FLUIDS

Modes of heat transfer – Thermal conductivity – Lee's disc method – Solar thermal power generation – Hybrid vehicles – Microwave oven – Surface tension and coefficient of viscosity – Poiseuille's flow experiment

UNIT V CRYSTAL PHYSICS

Unit cell – Bravais lattices – SC, BCC, FCC structures – Miller indices – d spacing in cubic lattice – Crystal growth from melt: Bridgeman Technique – Silicon ingots from Czochralski method – Silicon wafers from ingots and its applications.

LIST OF EXPERIMENTS

1. Determination of the wavelength of a given laser source

- 2. Determination of acceptance angle and numerical aperture of an optical fibre
- 3. Determination of velocity of sound and compressibility of a liquid using Ultrasonic interferometer
- 4. Determination of thermal conductivity of a bad conductor using Lee's disc method
- 5. Determination of viscosity of the given liquid using Poiseuilie's flow method

Contact Periods:

Lecture: 30 Periods

Tutorial: - Periods

Practical: 30 Periods

Project: – Periods Total: 60 Periods

TEXT BOOKS:

- 1. Bhattacharya D K and Poonam Tandon, "Engineering Physics", 2nd Edition, Oxford University Press, Chennai, 2017
- 2. Marikani A, "Engineering Physics", 3rd Edition, PHI publishers, Chennai, 2021

REFERENCES:

NOW

1. Shatendra Sharma and Jyotsna Sharma, "Engineering Physics", 29 Edition Bearson adia M.Tech., Ph.D. Education Services Private Limited, Chennai, 2018 Department of Chemical Engineering

6

6

6

6

KPR Institute of Engineering & Technology Arasur, Coimbatore - 641 407

B.TECH. - CH - R2021 - CBCS

- Avadhanulu M N, Kshirsagar P G and Arun Murthy TVS, "A Text book of Engineering Physics", 2nd Edition, S Chand Publishing, New delhi, 2018
- 3. Thyagaran K, Ajoy Ghatak, "Lasers Fundamantals and Applications", 2nd Edition, Laxmi Publications Pvt Limited, New delhi, 2019
- 4. https://nptel.ac.in/downloads/104104085/
- 5. https://nptel.ac.in/courses/122107035/8/

EVALUATION PATTERN:

Contin	uous Inter	nal Assessments		End Semester	Examinations		
Assessm (Theory (100 Mar	y)	Assessment (Practical) (100 Marks)		Theory Examinations	Practical Examinations		
*Individual Assignment / Case Study / Seminar / Mini Project / MCQ		Evaluation of Laboratory Observation, Record (Rubrics Based Assessments)	Test	Examinations (Examinations will be conducted for 100 Marks)	(Examinations will be conducted for 100 Marks)		
40	60	75	25				
25		25		25	25		
	5	0	50				
		Tota	l: 100				

*Role Play / Group Discussions / Debates / Oral Presentations / Poster Presentations / Technical presentations can also be provided. Course Coordinator can choose any one / two components based on the nature of the course.

.TECH. – CH – R2021	- CBCS	Cer	atre for	ond Techn) IET	•
	SEMESTER I		urses	2010	/			
		* Coin	nhator	ateg	jory:	BSC	>	
U21CY101	ENGINEERING CHEMISTRY		F	T	P	J	C	
			2	0	2	0	3	

PRE-REQUISITES:

Nil

COURSE OBJECTIVES:

- To inculcate the fundamentals of water technology and electrochemistry
- To gain basic knowledge of corrosion of metals and alloys
- To acquire knowledge about the properties of fuels and applications of polymers

COURSE OUTCOMES:

Upon completion of the course, the student will be able to

- CO1: Apply the principles of water technology in treatment of industrial and domestic water and estimate the various constituents of industrial water (Apply)
- CO2: Describe the principles and applications of electrochemical cells, fuel cells and solar cells (Understand)
- CO3: Outline the different types of corrosion processes and preventive methods adopted in industries (Understand)
- CO4: Explain the analysis and calorific value of different types of fuels (Understand)
- CO5: Classify the polymers and their engineering applications (Understand)

POs COs	P01	PO2	PO3	PO4	PO5	P06	P07	PO8	PO9	PO10	P011	PO12	PSO1	PSO2
CO1	3	1	-	-	-	-	2	F	1	-	-	1	1	1
CO2	3	1	-	-		-	2	-	1	-	•	1	1	1
CO3	3	1	-	-	-	-	2	-	1	-	-	1	1	1
CO4	3	1	-	-	-	-	2	-	1	-	-	1	1	1
CO5	3	1	-	•	-	-	2	-	1	-	-	1	1	1
Correlation levels: 1: Slight (Low)						2: M	oderat	e (Med	dium)		3: Sub	stantia	l (High)

CO-PO MAPPING:

SYLLABUS:

UNIT I CHARACTERISTICS OF WATER AND ITS TREATMENT

6

Characteristics of water - Hardness - Types - Dissolved oxygen - Total dissolved solids -Disadvantages due to hard water in industries - (Scale, Sludge, Priming, Foaming and Caustic embrittlement) - Water softening methods - Lime-soda, Zeolite, Ion exchange processes and reverse Osmosis and their applications – Specifications of domestic water (ICMR and WHO). Dr. S. Balasubramanian, M.Tech., Ph.D.

Professor & Head Department of Chemical Engineering KPR Institute of Engineering & Technology Arasur, Coimbatore - 641 407

Water treatment for municipal supply - Sedimentation with coagulant - Sand Filtration - Chlorination, Disinfection methods - UV treatment - Ozonolysis - Electro dialysis

ELECTROCHEMISTRY AND ENERGY STORAGE SYSTEMS UNIT II

Introduction, Electrodes - (Calomel electrode) - Electrochemical series and its applications, Brief introduction to conventional primary and secondary batteries - (Pb acid, Lithium)

Fuel cells - Polymer membrane fuel cells, Solid-oxide fuel cells - Working principles - Advantages, applications - Solar cells - Dye sensitized solar cells - Working principles - Characteristics and applications

UNIT III CORROSION AND ITS CONTROL

Types - Dry - Chemical corrosion and Wet - Galvanic and differential aeration (Pitting - Crevice pipeline) - Factors influencing rate of corrosion - Corrosion control methods - Sacrificial anode and impressed current method - Protective coating - Electroplating - Ni plating.

Alloys - Ferrous (stainless steel) - Heat treatment - Non-ferrous alloys (Brass -Dutch metal - German Silver) - Composition, properties and uses

UNIT IV FUELS AND COMBUSTION

Fuels- Solid fuel -- Coal -- Analysis of coal (Proximate analysis only) -- Liquid fuel -- Manufacture of synthetic petrol (Bergius process) - Octane number - Cetane number - Knocking in engines - Antiknocking agents - Gasoline additives - Gaseous fuel - Compressed natural gas (CNG) - Liquefied petroleum gases (LPG) - Composition only.

Calorific value - Higher and lower calorific values - Flue gas analysis (ORSAT method). Measurement of calorific value using bomb calorimeter - Three-way catalytic converter - Selective catalytic reduction of NOX

UNIT V POLYMERS

Introduction - Monomer - Dimers - Functionality - Degree of polymerization - Transition glass temperature Classification of polymers - Difference between thermoplastics and thermosetting plastics - Engineering application of plastics - ABS, PVC, PTFE and Bakelite.

Types of compounding of plastics - Moulding - Injection moulding - Extrusion moulding -Compression moulding - Conducting polymers - Polypyrrole - Polyacetylene - Polyaniline -Structure and applications, Composites - FRP - Properties and applications

LIST OF EXPERIMENTS

- 1. Determination of total, permanent and temporary hardness of a given sample water by EDTA method
- 2. Estimation of ferrous ion by potentiometric titration
- 3. Estimation of Copper in Brass by EDTA method
- 4. Determination of percentage of moisture, volatile, ash and carbon content in a given sample of Tech., Ph.D.

Professor & Head Department of Chemical Engineering KPR Institute of Engineering & Technology Arasur, Coimbatore - 641 407

32

6

6

6

6

60 Periods

Total

coal.

- 5. Determination of molecular weight and degree of polymerization of an oil sample by viscosity measurement (Ostwald's viscometer).
- 6. Determination of chloride content in the water sample
- 7. Determination of strength of HCl by pH metric method

Contact Periods:

Lecture: 30 Periods Tutorial: - Periods Practical: 30 Periods Project - Periods

TEXT BOOKS:

- 1. Jain P C and Monika Jain, "Engineering Chemistry", 16th Edition, Dhanpat Ral PublishingCompany, Pvt. Ltd., New Delhi, 2015
- 2. Vairam S, Kalyani P and Suba Ramesh, "Engineering Chemistry", 2nd Edition, Wilev India Pvt.Ltd, New Delhi, 2014

REFERENCES:

- 1. Friedrich Emich, "Engineering Chemistry", 2nd Edition, Scientific International Pvt. Ltd, New Delhi.2014
- 2. Prasanta Rath, "Engineering Chemistry", 1st Edition, Cengage Learning India, Pvt. Ltd. Delhi. 2015
- 3. Shikha Agarwal, "Engineering Chemistry, Fundamentals and Applications". 1st Edition. Cambridge University Press, 2015
- 4. https://nptel.ac.in/courses/113/104/113104008/

EVALUATION PATTERN:

Contin	nuous Inter	nal Assessments		End Semester	Examinations		
Assessm (Theor (100 Mar	y)	Assessment (Practical) (100 Marks)	II	Theory	Practical		
*Individual Assignment / Case Study / Seminar / Mini Project / MCQ	Written Test	Evaluation of Laboratory Observation, Record (Rubrics Based Assessments)	Test	Examinations (Examinations will be conducted for 100 Marks)	Examinations (Examinations will be conducted for 100 Marks)		
40	60	75	25				
25		25		25	25		
	5	iO		5	0		
		Tota	l: 100				

*Role Play / Group Discussions / Debates / Oral Presentations / Poster Presentations / Presentations / Presentations / Poster Presentatio presentations can also be provided. Course Coordinator can choose any one / two components based on Department of Chemical Engineering the nature of the course. KPR Institute of Engineering & Technology

enginee

Centre for

	SEMESTER 1	APR In:	Aca Co	aden Urse	nic s	Learn B	exona
U21CSG01	PROBLEM SOLVING AND C PROGRAMMING	/	*Coim	Cate	gory P	ESC J	с С
	Common to All Branches		2	0	2	0	3

PRE-REQUISITES:

Nil

COURSE OBJECTIVES:

- To provide exposure to problem-solving through programming
- To develop computational thinking perspective of one's own discipline
- To write, compile and debug programs using C language

COURSE OUTCOMES:

Upon completion of the course, the student will be able to

CO1: Formulate the algorithmic solutions for a given computational problem (Understand)

CO2: Describe modularization, structures and pointers in C language (Understand)

CO3: Design and implement algorithms for a given problem using C control structures (Apply)

CO4: Apply the C programming constructs for searching and sorting techniques (Apply)

CO5: Solve real time problems using suitable non-primitive data structures in C (Apply)

CO-PO MAPPING:

Correlation levels: 1: Slight (Low)						2: M	oderat	e (Me	dium)	3: Substantial (High)				
CO5	3	2	2	2	-	-	-	1	2	2	-	2	2	2
CO4	3	2	2	2	•	-	-	1	2	2	-	2	2	2
CO3	3	2	2	2	-	2	-	1	2	2	-	2	2	2
CO2	2	1	1	2	-	-	-	1	2	2	-	2	2	2
CO1	2	1	1	2	-	-	-	1	2	2	-	3	2	2
POs Cos	P01	P02	PO3	P04	P05	P06	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO

SYLLABUS:

UNIT I COMPUTATIONAL THINKING

Computational Thinking - Modern Computer - Information based Problem solving - Real world information and Computable Data - Data types and data encoding - Number Systems - Introduction to programming languages - Basics of C programming - Variables - Data types - Keywords - C program structure - Simple programs in C.

ALGORITHMIC APPROACH UNIT II

Logic - Boolean Logic - Applications of Propositional logic - Problem Definitions Logical Reasoning Tech., Ph.D. rofessor & Head and Algorithmic thinking - Pseudo code and Flow chart - Constituents of algorithms Cherucan Engineering KPR Institute of Engineering & Technology

34

Arasur, Coimbatore - 641 407

6

6

6

6

6

Selection and Repetition – Problem understanding and analysis – Control structures in C – Algorithm design and implementation using control structures

UNIT III SEARCHING, SORTING, AND MODULARIZATION

Data Organization – Arrays – Introduction to Searching and Sorting – Linear Search, Binary Search – Basic sorting techniques – Two-dimensional arrays – Matrix manipulation – Modularization – Functions – Function prototype – Function definition – Function call – Built-in functions (string functions and math functions) – Recursion

UNIT IV STRUCTURES AND POINTERS

Pointers – Pointer operators – Pointer arithmetic – Arrays and pointers – Array of pointers – Example Program – Sorting of names – Parameter passing – Pass by value – Pass by reference – Structure – Nested structures – Pointer and Structures – Array of structures – Example Program using structures and pointers – Unions

UNIT V FILES

Files – Types of file processing – Sequential access – Random access – Sequential access file – Example Program – Finding average of numbers stored in sequential access file – Random access file – Example Program – Transaction processing using random access files – Command line arguments

LIST OF EXPERIMENTS

A. Lab Programs

- 1. Using IO Statements, get higher secondary marks of a student. Calculate and display the medical and engineering cut-off marks. [Assume the calculation formula]
- Develop a C program to emulate the operations of an ATM using control structures. Authentication, Deposit, Withdrawal, and Balance check and pin change operations are to be supported.
- 3. Develop a calculator to perform the operations including addition, subtraction, multiplication, division and square of a number.
- Given different prices of a vegetable which is varying through the day (from morning to evening), find out the best buy price and sell price for the maximum profit. Eg. For the prices [33, 35, 28, 36, 39, 25, 22, 31], best buy is at 28 and best sell is at 39.
- Collect height and weight of 4 of your friends and calculate their body mass index. Use 2 dimensional array to store the values.
- 6. Weights of 10 students of your class who are standing in a line is given in a random order. Find out if there is a heavy person whose weight is the sum of previous two persons.
- Convert the given decimal number into binary, octal and hexadecimal numbers using user defined functions.
 Dr. S. Balasubramanian, M.Tech., Ph.D.
- 8. From a given paragraph perform the following using built-in functions: Professor & Head Department of Chemical Engineering
 - a) Find the total number of words. KPR Institute of Engineering & Technology Arasur, Coimbatore - 641 407

- b) Capitalize the first word of each sentence.
- 9. Solve Towers of Hanoi using recursion.
- 10. Develop an expense manager which reads date, product, price and product category. The program should display the total expense amount based on product category or date as per user's selection. Use structures.
- 11. Develop a banking application to store details of accounts in a file. Count the number of account holders based on a search condition such as whose balance is less than the minimum balance.

B. Mini Project (SAMPLE)

Create a Railway Reservation system with the following modules of Booking,

- Availability checking
- Cancellation
- Prepare chart

Contact Periods:

Lecture:	30 Periods	Tutorial: - Periods	Practical:	30 Periods	Project:	- Periods
					Total:	60 Periods

TEXT BOOKS:

- David D. Railey and Kenny A.Hunt, "Computational Thinking for Modern problem Solver", 1st Edition, CRC Press, 2014
- Brian W. Kernighan and Dennis Ritchie, " The C Programming Language", 2nd Edition, Pearson, 2015

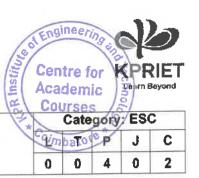
REFERENCES:

- Paolo Ferragina and Fabrizio Luccio, "Computational Thinking First Algorithms", Then Code", 1st Edition, Springer International Publishing, 2018
- 2. Reema Thareja, "Programming in C*, 2nd Edition, Oxford University Press, 2016
- 3. Paul Deitel and Harvey Deitel, "C How to Program", 7th Edition, Pearson Publication
- 4. Juneja, B. L and Anita Seth, "Programming in C",1st Edition, Cengage Learning India Pvt. Ltd., 2011
- 5. Pradip Dey, Manas Ghosh, "Fundamentals of Computing and Programming in C", 1st Edition, Oxford University Press, 2009

•

EVALUATION PATTERN:

Contin	uous Inter	nal Assessments	End Semester Examinations				
Assessm (Theor (100 Mar	y)	Assessment (Practical) (100 Marks)		Theory	Practical		
*Individual Assignment / Case Study / Seminar / Mini Project / MCQ 40 60 25		Evaluation of Laboratory Observation, Record (Rubrics Based Assessments)	Test	Examinations (Examinations will be conducted for 100 Marks)	Examinations (Examinations will be conducted for 100 Marks)		
		75	25				
		25		25	25		
	5	0		50			
		Tota	al: 100				


*Role Play / Group Discussions / Debates / Oral Presentations / Poster Presentations / Technical presentations can also be provided. Course Coordinator can choose any one / two components based on the nature of the course.

Mala

SEMESTER I

U21MEG01

ENGINEERING GRAPHICS

PRE-REQUISITES:

Nil

COURSE OBJECTIVES:

- To expose the standards and conventions followed in preparation of engineering drawings
- To develop graphic skills for communication of concepts, ideas and engineering drawings
- To expose on 2D & 3D drawings and its projections

COURSE OUTCOME:

Upon completion of the course, the student will be able to

CO1: Sketch the curves and orthographic projections of points as per BIS conventions (Apply)

- CO2: Illustrate the orthographic projections of straight lines and plane surfaces (Apply)
- **CO3:** Sketch the orthographic projections of solids, lateral surfaces of frustums, truncated solids and lts development (Apply)
- CO4: Develop the lateral surfaces of simple solids (Apply)
- CO5: Interpret the orthographic and isometric views of simple components (Apply)

CO-PO Mapping:

POs COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	2	-	3	-	-	1	-	2	-	1	2	1
CO2	3	2	2	-	3	-	-	-	-	2	-	1	2	1
CO3	3	2	2	-	3	-	-	-	-	3	-	1	2	1
CO4	3	2	2		3	-	-	-	-	3	-	1	2	1
CO5	3	2	2	-	3	-	-		-	3	-	1	2	1

SYLLABUS:

BASICS OF ENGINEERING DRAWING AND CAD (Not for examination)

Introduction – Drawing instruments and its uses – Sheet layout – BIS conventions – Lines – Lettering and dimensioning practices – Lines – Co – Ordinate points – Axes – Poly lines – Square – Rectangle – Polygons – Splines – Circles – Ellipse – Text – Move – Copy – Off – Set – Mirror – Rotate – Trim – Extend – Break – Chamfer – Fillet – Curves – Constraints viz. agency – Parallelism – Inclination and perpendicularity Dr. S. Balasubramanian, M.Tech., Ph.D.

Professor & Head Department of Chemical Engineering KPR Institute of Engineering & Technology Arasur, Coimbatore - 641 407

CONICS, SPECIAL CURVES AND PROJECTION OF POINTS UNIT I

Construction of parabola - Ellipse and hyperbola using eccentricity method - Construction of involutes for squares and circles - Construction of Tangent and normal to the above curves - Introduction -Method of projection - Planes of projection - Reference line and notations - Orthographic Projection of points - Points in all four quadrants

UNIT II PROJECTION OF STRAIGHT LINES AND SURFACES

Projection of straight lines - Lines inclined to HP / VP plane - Inclined to both HP and VP planes (straight lines are assumed to be in first guadrant only) - Projection of planes - Projection of square -Rectangle - Pentagon - Hexagon and circular plane - Inclined to both the plane by change of position method

PROJECTION OF SOLIDS UNIT III

Introduction - Projection of solids - Prisms - Pyramids - Cylinders and cones with axis inclined to both the planes (Solids resting on HP only)

DEVELOPMENT OF LATERAL SURFACES OF SOLIDS

Introduction - Cutting plane - Sectional views of right regular solids resting with base on HP - Prisms - Pyramids - Cylinder and cone - True shapes of the sections - Development of lateral surfaces of right regular prisms - Pyramids - Cylinders - Cones resting with base on HP only - Development of the frustums and truncations

UNIT V ORTHOGRAPHIC AND ISOMETRIC PROJECTIONS

Orthographic projection - Simple machine components using free hand sketching - Isometric projection - Simple Solid exercises and combination of solids

Contact Periods:

Lecture: - Periods

Tutorial: - Periods

Practical: - 60 Periods

Project: - Periods

Total: 60 Periods

TEXT BOOKS:

- 1. ND Bhat & VM Panchal, "Engineering Drawing", 51st Edition, Charotar Publishing House,
- 2. Venugopal K. and Prabhu Raja V, "Engineering Graphics", 6th Edition, New Age International (P) Limited 2010 Department of Chemical Engineering (P) Limited, 2019. KPR Institute of Engineering & Technology

Arasur, Coimbatore - 641 407

12

12

12

REFERENCE BOOKS:

- Natrajan K.V., A text book of Engineering Graphics, 21st edition, Dhanalakshmi Publishers, Chennai, 2017.
- 2. Sam Tickoo, AutoCAD 2013 for Engineers and Designers, 1st Edition, Dream tech Press, 2013.
- 3. M.H.Annaiah & Rajashekar Patil, Computer Aided Engineering Drawing, 4th Edition, New Age International Publishers, 2012.
- 4. Basant Aggarwal, Engineering Drawing, , 1st Edition, Tata Mc Graw Hill Education Private Limited, 2010.
- D.M.Kulkarni, A.P.Rastogi, A.K.Sarkar, "Engineering Graphics with AutoCAD", , 1st Edition, PHI Learning Private Limited, New Delhi, Revised Edition, 2010.

EVALUATION PATTERN:

Continuous Internal Assessm	ents			
Evaluation of Laboratory Observation,				
Record	End Semester Examinations			
(Rubrics Based Assessments)				
75	25			
100		100		
60	40			
	100			

*Role Play / Group Discussions / Debates / Oral Presentations / Poster Presentations / Technical presentations can also be provided. Course Coordinator can choose any one / two components based on the nature of the course.

Dr. S. Balasubramanian, M.Tech., Ph.D. Professor & Head Department of Chemical Engineering KPR Institute of Engineering & Technology Arasur, Coimbatore - 641 407

3.TECH. – CH – R	2021 – CBCS	131	Cent	tre fo	100		
[]	SEMESTER II		Lead	emic Ses	Chnol		eyanc
U21MA201	LAPLACE TRANSFORMS AND COMPLEX VARIABLES	0.	L	T	P P	J	c
			3	1	0	0	4

PRE-REQUISITES:

Nil.

COURSE OBJECTIVES:

- To understand the mathematical aspects of conversion time domain to frequency domain using Laplace transform and Inverse Laplace transform vice versa
- To use the concepts of complex analysis, in the study of heat flow, fluid dynamics and electrostatics
- To understand the concepts of singularities in the various domains of engineering fields

COURSE OUTCOMES:

Upon completion of the course, the student will be able to

- **CO1:** Apply the concepts of Laplace transform in core engineering applications (Apply)
- CO2: Apply the concepts of Inverse Laplace transform with their properties in engineering field (Apply)
- CO3: Analyze the complex functions and their mapping in certain complex planes (Understand)
- CO4: Evaluate complex contour integrals directly and use the Cauchy integral theorem in its various versions (Understand)
- CO5: Compute the residues of a function at given points or singularities and use the residue theorem to evaluate a contour integral (Understand)

CO-PO MAPPING:

POs COs	PO1	PO2	PO3	PO4	P05	P06	P07	P08	PO9	PO10	P011	PO12	PSO1	PSO2
CO1	2	2	-	-	-	-	-	•	-	-	-	1	1	1
CO2	3	2	-		-	-	-	-	-	-	-	-	1	1
CO3	2	2	-	-	-	-	-	-	-	-	-	-	1	1
CO4	2	2	-	-	-	-	-	-	*	-	-	-	1	1
CO5	3	3	•	-	-	-	-	-	-	-	-	-	1	1
Correlation	levels	5:	1: Slig	ght (Lo	w)	2: M	oderat	e (Meo	dium)		3: Sub	stantia	l (High)

9 + 3

9 + 3INVERSE LAPLACE TRANSFORM Inverse Laplace transform - Standard properties (statement only) - Second order linear differential 9 + 3**COMPLEX DIFFERENTIATION** Analytic functions - Cauchy-Riemann equations (Cartesian form) and sufficient conditions (excluding proofs) - Harmonic and orthogonal properties of analytic function - Construction of analytic functions - Bilinear transformations 9 + 3UNIT IV **COMPLEX INTEGRATION** Complex integration - Statement and applications of Cauchy's integral theorem and Cauchy's integral formula 9 + 3UNIT V SINGULARITIES AND RESIDUES Taylor's and Laurent's series expansions - Singular points - Classification of singularities - Residues

Lecture:	45 Periods	Tutorial:	15 Periods	Practical: - Periods	Project:	- Periods
					Total:	60 Periods

TEXT BOOKS:

- 1. Erwin Kreyszig, "Advanced Engineering Mathematics", 10th Edition, Wiley India Pvt Ltd, New Delhi, 2018.
- 2. Grewal B S, "Higher Engineering Mathematics", 44th Edition, Khanna Publishers, New Delhi, 2017.

REFERENCES:

- 1. Bali N P and Dr Manish Goyal, "A text book of Engineering Mathematics", 12th Edition, Laxmi Publications, 2016.
- 2. Thomas G B and Finney R L, "Calculus and Analytic Geometry", 14th Edition, Pearson Education India, 2018.
- 3. James Stewart, "Calculus: Early Transcendental", 7th Edition, Cengage Learning, New Delhi, Dr. S. Balasubramanian, M.Tech., Ph.D. 2015. Professor & Head

Department of Chemical Engineering KPR Institute of Engineering & Technology Arasur, Coimbatore - 641 407

SYLLABUS:

LAPLACE TRANSFORM **UNIT I**

Laplace transform - Conditions for existence - Transform of elementary functions - Standard properties (statement only) - Transforms of unit step function - Impulse function - Periodic function - Initial and final value theorems - Convolution theorem (without proof)

UNIT II

equations with constant coefficients

Cauchy's residue theorem

Contact Periods:

EVALUATION PATTERN:

	Contin	uous Internal As	sessmènts			
Assessme (100 Mark	End Semester					
Individual Assignment / Seminar / MCQ	Written Test	Individual Assignment / Seminar / MCQ	Written Test	Total Internal Assessments	Examinations	
40	60	40	60	200	100	
	Тс	otal	40	60		
				10	0	

*Role Play / Group Discussions / Debates / Oral Presentations / Poster Presentations / Technical presentations can also be provided. Course Coordinator can choose any one / two components based on the nature of the course

	SEMESTER II	Courses
U21PH201	MATERIALS SCIENCE	L T P J C
		2 0 0 0 2

Enginee

Centre fo

6

PRE-REQUISITES:

Nil

COURSE OBJECTIVES:

- To gain the knowledge of conducting and semiconducting materials
- To understand the concepts of magnetic, dielectric and optical properties of materials
- To enhance the knowledge of new engineering materials

COURSE OUTCOMES:

Upon completion of the course, the student will be able to

CO1: Demonstrate the electrical characteristics of conducting materials (Understand) CO2: Interpret the properties and types of semiconducting materials (Understand) CO3: Compare various types of magnetic materials for engineering applications (Understand) CO4: Explain the fundamental concepts of dielectric and optical materials (Understand) CO5: Examine new engineering materials for industrial applications (Understand)

POs COs	PO1	PO2	PO3	P04	PO5	PO6	P07	PO8	P09	PO10	P011	PO12	PSO1	PSO2
CO1	3	2	-	-	-	1	-	-	-	-	-	1	1	1
CO2	3	2	-	-	-	1	-	-	-	-	-	1	1	1
CO3	3	2	-	-	-	1	-	-	-	-	-	1	1	1
CO4	3	2	-	-	-	1	-	-	-	-	-	1	1	1
CO5	3	2	-	-	-	1	-	-	÷	-	-	1	1	1
Correlation	n level	s:	1: Sli	ght (La	w)	2: M	oderat	e (Me	dium)	ii	3: Sub	stantia	al (High	1)

CO-PO MAPPING:

SYLLABUS:

CONDUCTING MATERIALS UNIT I

Classical free electron theory - Expression for electrical conductivity and thermal conductivity -Wiedemann - Franz law - Drawbacks - Fermi distribution function - Density of energy states in metals

SEMICONDUCTING MATERIALS UNIT II

Intrinsic and Extrinsic semiconductor - Carrier concentration in n-type semiconductor - P-type semiconductor(qualitative) - Applications of semiconductors - Solar cell - LED - Hall effect and its Dr. S. Balasubramanian, M.Tech., Ph.D. experimental determination

Professor & Head Department of Chemical Engineering KPR Institute of Engineering & Technology Arasur, Coimbatore - 641 407

6

6

B.TECH. - CH - R2021 - CBCS

UNIT III MAGNETIC MATERIALS

Origin of magnetism – Dia, para and ferro magnetic materials – Domain theory – Soft and hard magnetic materials – Magnetic bubble memories – GMR sensor

UNIT IV DIELECTRIC AND OPTICAL MATERIALS

Dielectrics – Types of polarisation – Electronic polarisation – Dielectric breakdown – Ferroelectrics – Applications of dielectrics – Classification of optical materials – Nonlinear optics – Applications

UNIT V NEW ENGINEERING MATERIALS AND CHARACTERIZATION 6 TECHNIQUES

SMA – SiC – GaN – Rheological materials – Nanomaterials – Synthesis (Ball milling and CVD) – Quantum dot, quantum wire and quantum well(qualitative) – Characterisation techniques – Powder XRD(qualitative) – SEM

Contact Periods:

Lecture: 30 Periods Tutorial: - F	Periods Practical: - Perio	ds Project: - Periods
-----------------------------------	----------------------------	-----------------------

Total: 30 Periods

TEXT BOOKS:

- Wahab M A, "Solid State Physics: Structure and Properties of Materials", 3rd Edition, Narosa Publishing House, Chennai, 2018
- 2. Marikani A, "Materials Science", 1st Edition, PHI publishers, Chennai, 2017

REFERENCES:

- 1. Pillai S O "Solid State Physics", 9th Edition, New Age International Publishers, New Delhi, 2020
- 2. Bangwei Zhang, "Physical Fundamentals of Nanomaterials", 1st Edition, Chemical Industry Press, China, 2018
- Joginder Singh Galsin, "Solid State Physics An Introduction to Theory", 1st Edition, Academic Press, India, 2019
- 4. https://nptel.ac.in/courses/108/108/108108122/
- 5. https://nptel.ac.in/courses/113/105/113105081/

Dr. S. Balasubramanian, M.Tech., Ph.D. Professor & Head Department of Chemical Engineering KPR Institute of Engineering & Technology Arasur, Coimbatore - 641 407

45

6

EVALUATION PATTERN:

	Contin	uous Internal As	sessments		
Assessment I (100 Marks)		Assessme (100 Mari		Total Internal Assessments	End Semester Examinations
Individual Assignment / Seminar / Mini Project / MCQ	Written Test	Individual Assignment / Seminar / Mini Project / MCQ	Written Test	Assessments	LXammatons
4ŭ	60	40	60	200	100
			40	60	
	То	tal	-	10	0

Role Play / Group Discussions / Debates / Oral Presentations / Poster Presentations / Technical presentations can also be provided. Course Coordinator can choose any one / two components based on the nature of the course.

Hely

B.TECH. - CH - R2021 - CBCS

SEMESTER II

	olmbu	tore	Cate	gory:	: ESC	>
U21EEG01	BASICS OF ELECTRICAL AND ELECTRONICS ENGINEERING	L	Т	Р	J	С
	ENGINEERING	3	0	0	0	3

PRE-REQUISITES:

NIL

COURSE OBJECTIVES:

- To solve an electric network by applying basic laws
- · To acquire the knowledge of operating principle, characteristics, starting, methods of DC and AC machines
- To acquire the knowledge of construction, operating principle, characteristics of semiconductor devices and its applications

COURSE OUTCOMES:

Upon completion of the course, the student will be able to

- CO1: Solve an electric network by applying basic laws (Apply)
- CO2: Acquire the knowledge of operating principles, characteristics, starting, and speed control methods of DC motors (Understand)
- CO3: Explain the operating principles of AC motor and characteristics, starting methods of induction motor (Understand)
- CO4: Summarize the construction, principle and characteristics of semiconductor devices (Understand)
- CO5: Interpret the applications of semiconductor devices (Analyze)

CO-PO MAPPING:

POs COs	P01	PO2	P03	PO4	P05	PO6	P07	PO8	PO9	PO10	P011	PO12	PSO1	PSO2
CO1	•	-	-	-	-	-	3	3	-	2	-	3	1	1
CO2	-	-	-		-	•	3	3	-	2	-	3	1	1
CO3	-	-	-	-	-	-	3	3	-	2	-	3	1	1
CÓ4	-	-	-	-	-	-	3	3	-	2	•	3	1	1
CO5	-	-	-	-	-	-	3	3	•	2	-	3	1	1
Correlation	ı level:	5:	1: Slig	ght (Lo	w)	2: M	oderat	e (Med	dium)		3: Sub	stantia	l (High)

SYLLABUS:

	BASIC CONC	EPTS OF ELECTRIC CI	RCUITS		9
		ements – Sources – Eler a law and Kirchhoff's laws			
	Starters for DC	Principle of operation – 1 motor – Two point – Thre			
	•	and AC MOTOR			9
		Three phase induction ns – Starters – DOL – Sta			
	SEMICONDU	CTOR DEVICES			9
Construction o	peration and ch	aracteristics: PN Junction,	Zener Diode - BJT - FE	Т	
UNIT V		NS OF SEMICONDUCTO	R DEVICES		9
Rectifier- Half Configuration	wave – Full-w	ave - Filters - Voltage re	egulator – Series and sl	nunt – CE ,	CB and CC
Contact Perio	ods:				
Lecture: 45 P	eriods	Tutorial: - Periods	Practical: - Periods	Project:	- Periods
ĸ				Total	: 45 Periods

TEXT BOOKS:

- 1. Sudhakar A and Shyam Mohan SP, "Circuits and Network Analysis and Synthesis", 5th Edition, McGraw-Hill Education, New Delhi, Jul 2017.
- 2. R.K.Rajput, "Electrical Machines", 6th Edition, Laxmi Publications, Jan 2016.
- 3. V.K Metha and Rohit Metha, "Principles of Electronics", 12th Edition, S.Chand Publications, 2020.

REFERENCES:

- 1. William H. Hayt Jr, Jack E. Kemmerly and Steven M. Durbin, "Engineering Circuits Analysis", 8th Edition, McGraw-Hill Education, New Delhi, Aug 2013
- 2. S.K. Bhattacharya, "Electrical Machines", 4th Edition, McGraw-Hill Education, New Delhi, July2017
- R.Sedha, "A text book of Applied Electronics", 4th Edition, S.Chand Publications, Revised edition, Jul 2017

EVALUATION PATTERN:

	Contin	uous Internal As	sessments			
Assessme (100 Mari		Assessme (100 Mari		End Compositor		
*Individual Assignment / Case Study / Seminar / Project / MCQ	Written Test	*Individual Assignment / Case Study / Seminar / Project / MCQ		Total Internal Assessments	End Semester Examinations	
40	60	40	60	200	190	
	Το	tal		40	60	
				10	0	

*Role Play / Group Discussions / Debates / Oral Presentations / Poster Presentations / Technical presentations can also be provided. Course Coordinator can choose any one / two components based on the nature of the course.

dh

Engineerin

Centre for Academic

Courses

Instin

SEMESTER II

	*Coimbato	T	Cate	gory:	PCC	;
U21CH201	INTRODUCTION TO CHEMICAL ENGINEERING	L	Ť	Р	J	С
•		3	0	0	0	3

PRE-REQUISITES:

Nil

COURSE OBJECTIVES:

- · To get an overview of Chemical Engineering
- To learn the history of Chemical Engineering
- To understand the principles of unit operations and unit processes
- To introduce computational tools used in Chemical Engineering domain

COURSE OUTCOMES:

Upon completion of the course, the student will be able to

CO1: Define the basic principles of Chemical engineering (Understand)
CO2: Explain the concepts of Unit Operations (Understand)
CO3: Understand the concepts of Unit Processes (Understand)
CO4: Know the design and process control concepts (Apply)
CO5: Learn the various computational tools (Apply)

CO-PO MAPPING:

Correlation	i level:	s:	1: Slie	ght (Lo	w)	2: M	oderat	e (Med	dium)		3: Sub	stantia	al (High)
CO5	2	2	2	2	2	-	3	3	-	2	-	3	2	2
CO4	2	2	2	2	2	-	3	3	-	2	-	3	2	2
CO3	2	2	2	2	2	-	3	3	-	2	-	3	2	2
CO2	2	2	2	2	2	-	3	3	-	2	-	3	2	2
CO1	2	2	2	2	2	-	3	3	-	2	-	3	2	2
POs COs	P01	P02	PO3	PO4	P05	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO

SYLLABUS:

UNIT I INTRODUCTION

History of Chemical Engineering – Great Personalities of Chemical Engineering – Chemist and Chemical Engineer – Role of Chemical Engineering in this world DApplications and Achievements Professor & Head

Department of Chemical Engineering KPR Institute of Engineering & Technology Arasur, Coimbatore - 641 407

9

9

9

9

UNIT II UNIT OPERATIONS

Basic definitions and basic concepts – Description of different Unit Operations – Fluid mechanics – Mechanical Operations – Heat Transfer and Diffusion Mass Transfer principles

UNIT III UNIT PROCESSES

Description of different Unit Processes – Chemical Kinetics – Basic principles and reaction mechanism – Thermodynamics concepts used in Chemical Engineering

UNIT IV DESIGN AND PROCESS CONTROL

Range of scale – Lab scale, pilot plant and large scale – Equipment Design and process variables – Process dynamics and control – Basic principles – Chemical Process Industries – Flow sheet representation – Evolution of an Industry – Sulphuric acid and Soda ash manufacture

UNIT V COMPUTATIONAL CHEMICAL ENGINEERING

Chemical Engineering Software – Computational tools used like MATLAB, ASPEN PLUS, ANSYS CFD, SCILAB, DWSIM – Applications of Chemical Engineering in various fields like Food, Water, Medical, Energy, and Agriculture and its future scope

CONTACT PERIODS:

Lecture: 45 Perio	ts Tutorial: - Periods	Practical: - Periods	Project: - Periods
-------------------	------------------------	----------------------	--------------------

Total: 45 Periods

TEXT BOOKS:

- Salil K Ghosal, Syamal K Shanyal and Siddhartha Datta "Introduction to Chemical Engineering", 1st Edition, Tata McGraw- Hill education, 1993
- Badger W.L. and Banchero J.T., "Introduction to Chemical Engineering", 6th Edition, Tata McGraw Hill, 1997
- Pushpavanam S, "Introduction to Chemical Engineering" 1st Edition, Prentice Hall India Learning Private Limited, 2012

REFERENCES:

- McCabe, W.L., Smith, J. C. and Harriot, P. "Unit operations in Chemical Engineering", 7th Edition, McGrawHill, 2001.
- 2. Bruce A Finlayson, "Introduction to Chemical Engineering Computing", 1st Edition, John Wiley and Sons, 2014.
- 3. K. A. Solen and J. N. Harb, "Introduction to Chemical Engineering Tools for Today and Tomorrow", 5th Edition, Wiley, 2011.

EVALUATION PATTERN:

		sessments	uous Internal Ase	Contin	
End Semester		- C.	Assessme (100 Mari		Assessme (100 Mark
Examinations	Total Internal Assessments	*Individual Assignment / Case Study / Seminar / Project / MCQ		Written Test	*Individual Assignment / Case Study / Semlnar / Project / MCQ
100	200	60	40	60	40
60	40		tal	To	
0	10				

*Role Play / Group Discussions / Debates / Oral Presentations / Poster Presentations / Technical presentations can also be provided. Course Coordinator can choose any one / two components based on the nature of the course.

MA

KPR Institute	Cent. Cent. Cade	re foi	and techn	PR sam Be) IET
Con	C	ateg	ory: I	HSM	C
1	Plato	1ª	P	J	C
	1	0	2	0	2

SEMESTER II

PERSONALITY ENHANCEMENT

PRE-	REOL	JISITES:

U21EN201

Nil

COURSE OBJECTIVES:

- To develop of personality traits that contributes in the professional environment
- To create a basic awareness about the significance of soft skills in professional and interpersonal communications
- To enhance the level of self-confidence that helps to excel in the leadership skills

COURSE OUTCOMES:

Upon completion of the course, the student will be able to

CO1: Nurture a deep understanding of personality development and interpersonal relationship for overall self-development (Understand)

CO2: Communicate proficiently in high-end interviews and in all social situations (Understand)

CO3: Synthesize complex concepts and present them in speech and writing (Analyse)

CO4: Negotiate and lead teams towards success (Understand)

CO5: Present ideas in an effective manner using web tools (Apply)

Correlation	n levels	s:	1: Slig	ght (Lo	w)	2: M	oderat	e (Med	dium)		3: Sub	stantia	ıl (High)
CO5	-	-	-	-	-	-	-	1	-	3	-	-	1	1
CO4	-	-	-	-	-	-	-	-	2	3	-	-	1	1
CO3	-	-	-		-	-	-	-	2	3	-	-	1	1
CO2	-	•	-	-	-	-	-	1	2	3	-	1	1	1
CO1	-	-	-	-	-	-	-	-	2	3	-	1	1	1
POs Cos	P O1	P02	PO3	P04	P05	P06	P07	PO8	PO9	PO10	P011	PO12	PSO1	PSO2

CO-PO MAPPING:

SYLLABUS:

UNIT I LEXICAL REASONING

Module:1 Establishing Associations

Activity: Verbal Analogy, Logical Reasoning

Module:2 Lateral Thinking

Activity: Reasoning and Assertions

Module:3 Sentence Completion

Dr. S. Balasubramanian, M.Tech., Ph.D. Professor & Head Department of Chemical Engineering KPR Institute of Engineering & Technology Arasur, Coimbatore - 641 407

9

Activity: Cloze Test, Single Word Substitutes 9 SOCIAL CORRESPONDENCE UNIT II **Module:4 Etiquettes** Activity: Brain storming & performing in actions **Module:5 Introspection** Activity: SWOT Analysis, Goal Setting Module:6 Co-verbal Gesture Activity: Body Language, Non verbal cues 9 ART OF NETWORKING UNIT III Module:7 Addressing a Multitude Activity: Welcome address, Vote of Thanks, Public Speaking Module:8Persuasive Communication Activity: Making Technical Presentation Module:9 Career Oriented Communication Activity: Face to face Conversation. Mock Interview 9 **CRITICAL THINKING** Module:10 Organizing ideas Activity: Mind Mapping Module:11 Problem Solving Skills Activity: Conflict management, Case Study Module:12 Critical Review Activity: Book/ Movie Review, Comparative Analysis 9 CONTENT WRITING UNIT V Module:13 Reports Activity: Writing Event Report, Project Report Module:14 Writing for Digital platform Activity: Writing Posts, Blogs Module:15 Developing Content Activity: Product Description, Writing Proposals

LIST OF EXERCISES

- 1. Listening to Inspirational Speech
- 2. Listening to Product Description
- 3. Book/Movie Review
- 4. Presentation
- 5. Mock Interview
- 6. Public Speaking

Contact Periods:

Lecture: 15 Periods

Tutorial: - Periods

Practical: 30 Periods

Project: - Periods

Total: 45 Periods

TEXT BOOKS:

- Meenakshi Raman & Sangeetha Sharma. "Professional English: for AKTU", 1st Edition, Oxford University Press. 2018.
- 2. Barun, K.Mitra, "Personality Development and Soft Skills", 2rd Edition, OUP India 2016.

REFERENCES:

- 1. Mathew Allen. "Smart Thinking: Skills for Critical Understanding and Writing", 2nd Edition, OUP India, 2016.
- 2. Means, Thomas L, "English and Communication for Colleges", 4th Edition, Cengage, 2017
- 3. Using English: "A Coursebook for Undergraduate Engineers and Technologists", 1st Edition, Orient Black Swan, 2017.

Contir	nuous Inter	nal Assessments	End Semester Examinations	
Assessm (Theor (100 Mar	y)	Assessment (Practical) (100 Marks)		
Individual Assignment / Seminar / MCQ	Written Test	Evaluation of Laboratory Observation, Record (Rubrics Based Assessments)	Test	Practical Examinations (ExamInations will be conducted for 100 Marks)
40	60	75	25	
25		25		50
	5	0		50
		Tota	l: 100	

EVALUATION PATTERN:

*Role Play / Group Discussions / Debates / Oral Presentations / Poster Presentations / Technical presentations can also be provided. Course Coordinator can choose any one / two components based on the nature of the course.

Engine

	SEMESTER II	12 00	ourse	s	na/	
		Coim	Cate	gory	BSC	;
U21CY202	CHEMISTRY FOR TECHNOLOGISTS	L	T	P	J	С
		2	0	2	0	3

PRE-REQUISITES:

Nil

COURSE OBJECTIVES:

- To acquire basic knowledge of organic intermediates, reactions mechanism and their • applications
- To understand the classification and chemical properties of biomolecules ٠
- To gain knowledge about the synthesis and applications of drugs

COURSE OUTCOMES:

Upon completion of the course, the student will be able to

CO1: Explain the various reaction intermediates involved in chemical reactions (Understand)

- CO2: Illustrate the different electrophilic and nucleophilic reactions (Understand)
- CO3: Outline the classification, structure and properties of carbohydrates, amino acids and proteins (Understand)
- CO4: Estimate the saponification value, iodine value, total fatty acid content in the soap, oil and explain the cleansing mechanism of soap and detergents (Understand)
- CO5: Classify the drugs, their synthesis and their mode of action (Understand)

POs COs	P 01	PO2	PO3	PO4	PO5	P06	P07	PO8	PO9	PO10	P011	PO12	PSO1	PSO2
CO1	3	1	-	-	-	-	2	-	-	-	-	2	1	1
CO2	3	1	-	-	-	-	2	-	-	-	*	2	1	1
CO3	3	1	-	-	-		2	-	-	-	-	2	1	1
CO4	3	1	-	-	-	-	2	-	1	-	-	2	1	1
CO5	3	1	-	-	-	-	2	-	1	-	-	2	1	1
Correlation	evel	5:	1: Sli	ght (Lo	w)	2: M	oderat	e (Me	dium)		3: Sub	stantia	l (High)

CO-PO MAPPING:

SYLLABUS:

STRUCTURE AND REACTIVITY **UNIT I**

Homolytic and heterolytic fission of a covalent bond - Generation - Structure and stability - Free radicals, carbocations, carbanions and carbanes, Classification of organic reactions, Electrophiles and nucleophiles - Types - Aromaticity - Huckel's rule for aromaticity in benzenoid and nonbenzenoid compounds - Antiaromaticity and homo-aromaticity - Application of intermediates -Carbocation - Pinacol - Pinacolone reaction, Benzilic acid - Carbanion - Michael reaction, M.Tech., Ph.D. Professor & Head

6

Department of Chemical Engineering KPR Institute of Engineering & Technology Arasur, Coimbatore - 641 407

6

6

ß

6

Knoevenage! reaction – Free radical – Wohl-Ziegler bromination reaction – Carbene – Reimer-Tiemann reaction – Wolff rearrangement

UNIT II REACTION MECHANISMS

Electrophilic Reactions: SE1, SE2, SEAr – Mechanism, Electrophilic addition – Halogenation of alkene, hydrohalogenation – (addition of HBr on alkene- Markovnikov's rule and anti-Markovnikov'srule) – Electrophilic addition – Halogenation of ketones, Aromatic substitution – Nitration, Friedel Crafts alkylation – Acylation and halogenation – Nucleophilic Reactions: SN1, SN2, SNAr, & benzyne- mechanism – Nucleophilic addition of carbonyl – Ammonia derivatives – Grignard's reagent

UNIT III BIOMOLECULES

Introduction – Classification, structure and chemical properties of monosaccharides – Glucose, fructose, disaccharides – Sucrose and polysaccharides – Starch and cellulose, cellulose derivatives – Carboxy methyl cellulose and gun cotton

Amino acids – Classification – Preparation – Strecker, Gabriel phthalimide and physical and chemical properties – Proteins – Composition – Classification – Chemical reactions and structure

UNIT IV OILS, FATS, SOAPS AND DETERGENTS

Lipids, Fatty Acids – Introduction – Structure and chemical composition of oils and fats – Types, physical and chemical properties – Salt formation, esterification, halogenation, oxidation, analysis of oils, fats and its significance (Acid, Iodine, Saponification values, Reichert- Meissl value) Soaps – Types of soaps, Manufacture of soap – Hot process, Cleansing action of soaps, Detergents – Types of detergents – Cationic, anionic, amphoteric, neutral detergents, Comparison between soaps and detergents

UNIT V MEDICINAL CHEMISTRY

Drugs – Requirements of drug – Classification based on chemical structure and therapeutic action, Antibacterial agents – Definition – Mode of action – Synthesis and properties – Sulfonamides, Antimalarial – Definition – Mode of action – Synthesis and properties (Chloroquinine), Analgesics – Definition – Mode of action – Synthesis and properties – Acetaminophen, Cardiovascular drugs – Definition – Mode of action – Synthesis and properties – Barbiturates, Anti-inflammatory definition – Mode of action – Synthesis and properties – Barbiturates, Anti-inflammatory definition –

LIST OF EXPERIMENTS

- 1. Synthesis of cinnamic acid from benzaldehyde
- Halogenation Preparation of 2,4,6- tribromo aniline from aniline & Acetylation Preparation of acetanilide from aniline and bromination.
- 3. Qualitative tests for carbohydrates and proteins
- 4. Determination of saponification value of oll / fat
- 5. Synthesis of Barbituric acid from malonic acid
- 6. Synthesis of acetaminophen or paracetamol
- 7. Nitration Preparation of picric acid

Rely

Dr. S. Balasubramanian, M.Tech., Ph.D. Professor & Head Department of Chemical Engineering KPR Institute of Engineering & Technology Arasur, Coimbatore - 641 407

Contact Periods:

Lecture: 30 Periods Tutorial: - Periods Practical: 30 Periods Project: - Periods

Total: 60 Periods

TEXT BOOKS:

- 1. Bhal B.S. and Arun Bhal, "A Text Book of Organic Chemistry", 22nd Edition, S.Chand & Co. New Delhi, 2018
- 2. Jonathan Clayden, Nick Greeves, Stuart Warren and Peter Wothers, Organic Chemistry, Oxford University Press, 2nd Edition, New Delhi, 2013

REFERENCES:

- 1. Shikha Agarwal, "Engineering Chemistry, Fundamentals and Applications", 1st Edition, Cambridge University Press, 2015.
- 2. Ashutosh Kar, "Medicinal Chemistry", 7th Edition, New Age International Pvt, Ltd., 2010.
- 3. Sharma B.K, Industrial chemistry, 19th Edition, Krishna Prakashan Media Pvt. Ltd., Meerut, 2011.
- 4. https://nptel.ac.in/courses/104/106/104106131.

Contin	uous Inter	nal Assessments		End Semester	Examinations
Assessmo (Theory (100 Mar	/)	Assessment (Practical) (100 Marks)		Theory Examinations	Practical Examinations
*Individual Assignment / Case Study / Seminar / Mini Project / MCQ	Written Test	Evaluation of Laboratory Observation, Record (Rubrics Based Assessments)	Test	(Examinations will be conducted for 100 Marks)	Examinations s (Examination will be
40	60	75	25		
25		25		25	25
	5	0		5	60
		Tota	al: 100		

EVALUATION PATTERN:

*Role Play / Group Discussions / Debates / Oral Presentations / Poster Presentations / Technical presentations can also be provided. Course Coordinator can choose any one / two components based on the nature of the course.

Dr. S. Balasubramanian, M.Tech., Ph.D. Professor & Head Department of Chemical Engineering KPR Institute of Engineering & Technology Arasur, Coimbatore - 641 407

5.12011 011 - N2021	- 6565	Centre for
	SEMESTER II	Academic
		Category ESC
U21CSG02	PYTHON PROGRAMMING	Datare P J C
		2 0 2 0 3

of Engineerin

PRE-REQUISITES:

NII

COURSE OBJECTIVES:

- To understand syntax and semantics of python programming
- To implement programs using python data structures
- To gain expertise in using python libraries for solving real time problems

COURSE OUTCOMES:

Upon completion of the course, the student will be able to

CO1: Describe the basic operations of tokens in python (Understand)

CO2: Demonstrate the programs using control statements (Apply)

CO3: Develop programs using python data structures (Apply)

CO4: Implement the exceptions in file-handling concepts (Apply)

CO5: Apply the python libraries in real-world problems (Apply)

CO-PO MAPPING:

Correlation levels: 1: Slight (Low)				2: M	oderat	e (Me	dium)		3: Sub	stantia	l (High)		
CO5	3	2	2	2	1	-	•	1	2	2	-	2	2	2
CO4	3	2	2	2	-	-	-	1	2	2	-	2	2	2
CO3	3	2	2	2	-	-	-	1	2	2	-	2	2	2
CO2	2	1	1	2	-	-	-	1	2	Ż	-	2	2	2
CO1	2	1	1	2	-	-	-	1	2	2	-	2	2	2
POs COs	P01	PO2	PO3	P04	PO5	P06	P07	PO8	PO9	PO10	P011	PO12	PS 01	PSO

SYLLABUS:

UNIT I LANGUAGE BASICS

Python interpreter and interactive mode – Tokens – Data types – Numbers and math functions – Input and Output operations – Comments – Reserved words – Indentation – Operators and expressions – Precedence and associativity – Type conversion – Debugging – Common errors in Python

UNIT II CONTROL STATEMENTS, FUNCTIONS, AND MODULES

Selection – Conditional branching statements – if – if-else – Nested-if – if-elif-else statements – Iterative statements – while – for loop – break – continue and pass statements – **Functions bifunctions of Anonymous** and Function call – Variable scope and Lifetime – Return statement – Lambda functions of Anonymous functions – Recursion – Modules and Packages KPR Institute of Engineering & Technology Arasur, Coimbatore - 641 407

6

UNIT III **PYTHON DATA STRUCTURES**

Strings - Slicing - Immutability - Built-in string methods and functions - Concatenating - Appending and Multiplying strings - String modules - List - Creation - Accessing values - Slicing - List methods - In-built functions for Lists - Tuples - Creation - Operations on tuples - Traversing - Indexing and Slicing – Tuple assignment – In-built functions for tuples – Sets – Creation – Operations – Dictionaries - operations and methods

EXCEPTION AND FILE HANDLING UNIT IV

Exceptions - Errors and Exceptions - Handling exception - Built-in and User-defined exceptions - Files – Types – Operations – Open – Read – Write – Close

NUMPY and PANDAS UNIT V

Numpy -- Introduction -- Computations using NumPy functions -- Computation on Arrays -- Aggregation - Indexing and Sorting - Pandas - Introduction and Basic Pandas Concepts - Data frames - Data Handling

LIST OF EXPERIMENTS

- Programs on selection and Iteration operations. 1.
- Get an integer input from a user. If the number is odd, then find the factorial of a number and find 2. the number of digits in the factorial of the number. If the number is even, then check the given number is palindrome or not.
- Strings and its operations. 3.
- Given two strings, PRINT (YES or NO) whether the second string can be obtained from the first by 4. deletion of none, one or more characters.
- 5. List and its operations.
- 6. Programs for positive and negative indexing.
- 7. Program to check if the given list is in Ascending order or Not.
- Tuples and its operations. 8.
- Python program to convert a tuple to a string. 9.
- 10. Python program to reverse a tuple.
- 11. Sets and its operations.
- 12. Python program to check if a set is a subset of another set.
- 13. Dictionaries and its operations.
- 14. Python program to iterate over dictionaries using for loops.
- 15. Computations using NumPy functions.
- 16. NumPy program to convert a list of numeric value into a one-dimensional NumPy array.
- 17. NumPy program to convert a list and tuple into arrays.
- 18. Data manipulations using Pandas.
- 19. Program to convert a NumPy array and series to data frames.
- 20. Program to add, subtract, multiple and divide two Pandas Series KPR Institute of Engineering & Technology Arasur, Coimbatore - 641 407

6

Dr. S. Balasubramanian, M.Tech., Ph.D.

Professor & Head

Department of Chemical Engineering

6

21. Program to retrieve and manipulate data using dataframes.

Contact Periods:

Lecture: 30 Periods Tutorial: - Periods	Practical: 30 Periods	Project: - Periods
---	-----------------------	--------------------

Total: 60 Periods

TEXT BOOKS:

- Reema Thareja, "Python programming: Using problem solving approach", 1st Edition, Oxford Press, 2017
- William McKinney, Python for Data Analysis: Data Wrangling with Pandas, NumPy, and IPython, 2nd Edition, Shroff/O'Reilly Publication, 2017

REFERENCES:

- 1. Allen B. Downey, "Think Python: How to Think Like a Computer Scientist", 2nd Edition, Updated for Python 3, Shroff/O'Reilly Publishers, 2016
- 2. Ashok Namdev Kamthane and Amit Ashok Kamthane, "Programming and Problem Solving with Python", 2nd Edition, McGrawHill Education, 2018
- Robert Sedgewick, Kevin Wayne, Robert Dondero, "Introduction to Programming in Python: An Inter-disciplinary Approach", 1st Edition, Pearson India Education Services Pvt. Ltd., 2016
- 4. https://python-iitk.vlabs.ac.in/List%20of%20experiments.html
- 5. http://greenteapress.com/wp/think-python/

EVALUATION PATTERN:

Contir	uous Inter	nal Assessments		End Semeste	er Examinations
Assessm (Theory (100 Mar	y)	Assessment (Practicai) (100 Marks)		Theory	Practical
*Individual Assignment / Case Study / SemInar / Mini Project / MCQ	Written Test	Evaluation of Laboratory Observation, Record (Rubrics Based Assessments)	Test	Examinations (Examinations will be conducted for 100 Marks)	Examinations (Examinations will be conducted for 100 Marks)
40	60	75	25		
25		25		25	25
	50				50
		Tota	al: 100		

*Role Play / Group Discussions / Debates / Oral Presentations / Poster Presentations / Technical presentations can also be provided. Course Coordinator can choose any one / two components based on the nature of the course.

BCS		sol Cent	neerin tre foi	a ond Ter		
	SEMESTER II		iemir.	o Joury	Learn I	Beyond
		Comp	ator	1	. EO	
MANUFAC	TURING PRACTICES	- E	1	P	J	G
		0	0	4	Û	2

PRE-REQUISITES:

U21MEG02

Nil

COURSE OBJECTIVES:

- To provide exposure on workshop tools and additive manufacturing processes
- To provide hands on training experiences in sheet metal, carpentry welding and plumbing operations
- To provide hands on experience on soldering and simple electrical circuit wiring

COURSE OUTCOMES:

Upon completion of the course, the student will be able to

CO1: Identify the various tools and measuring equipment used for assembly and dismantling practice (Apply)

CO2: Develop simple components using 3D printer (Apply)

CO3: Fabricate products using sheet metal and carpentry (Apply)

CO4: Perform operations such as welding and plumbing (Apply)

CO5: Connect and test the electrical and electronics components for the given circuit diagram (Apply)

CO PO Mapping:

POs COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	1	1	-	1	-	1	-	1	1	-	1	1	1
CO2	3	1	1	-	3	-	1	-	2	1	-	2	1	1
CO3	3	1	1	-	1	-	1	-	3	2	-	1	1	1
CO4	3	1	1	-	1	-	1		3	2	-	1	1	1
CO5	3	1	1	-	1	-	1	-	3	2	-	1	1	1
Correlatio	n level	s: 1: S	light (l	Low)		2: Moo	derate	(Medi	um)		3: Sub	stantial	(High)	

SYLLABUS

UNIT I PRODUCT WORKSHOP

Disassemble the product of sub assembly – Measure various dimensions using measuring instruments. Free hand rough sketch of the assembly and components – Name of the components and indicate thevarious materials used – Study the functioning of the assembly and parts – Study the assembly and components design for compactness – Processing – Ease of assembly and disassembly and easembly and the product or subassembly

Professor & Head Department of Chemical Engineering KPR Institute of Engineering & Technology Arasur, Colmbatore - 641 407

Study of 3 axis 3D printing machine – Methods of 3D printing – SLA and FDM methods – Pre – processing – Geometry creation – Support generation and slicing – Post Processing – Requirement and Techniques Support Removal – Sanding – Acetone treatment – Polishing

UNIT III SHEET METAL AND CARPENTRY WORKSHOP

Study of tools and equipment – Draw development drawing of simple objects on sheet metal (cone – Cylinder – Pyramid – Prism – Tray etc.) – Fabrication of components using small shearing and bending machines – Riveting practice – Study of carpentry process – Fabrication of wood joints like Lap – Tee – Dovetail and mortise & tenon joint

UNIT IV WELDING AND PLUMBING WORKSHOP

Study of tools and equipment – Study of various welding – Arc welding practice – Fitting – Square butt joint and lap joint – Plumbing tools – Make a plping joint to a simple piping layout (should include cutting – Threading and pipe fixing)

UNIT V ELECTRICAL AND ELECTRONICS ENGINEERING WORKSHOP

Study of tools and equipment – Study of basic electrical components and symbols – Simple Wiring – Staircase Wiring – Fluorescent wiring – Study of soldering tools and methods of soldering

Contact Periods:

Lecture: – Periods Tutorial: – Periods Practical: 60 Period Project: – Periods Total: 60 Periods Total: 60 Periods

LIST OF EXPERIMENTS

- 1. Study on measuring instruments used in workshop practices.
- 2. Dismantling, measuring and reassembling of centrifugal pump.
- 3. 3D prototyping of simple components using FDM method.
- 4. 3D Printing of simple geometric shapes using SLA printer.
- 5. Fabrication of sheet metal tray and funnel.
- 6. Fabrication of wood joints.
- 7. Preparation of MS plate for Lap, butt and Tee joints using arc welding
- 8. Installation of water lines for washbasin and showers faucets.
- 9. Preparation of wiring for tube light, staircase and electric fan.
- 10. Soldering of a simple circuit consists of THC and SMD components.

Dr. S. Balasubramanian, M.Tech., Ph.D. Professor & Head Department of Chemical Engineering KPR Institute of Engineering & Technology Arasur, Coimbatore - 641 407

12

TEXT BOOKS:

- 1. Hajra Choudhury, "Elements of Mechanical Engineering", 11th Edition, Media Promoters, 2010.
- S.K. Hajra Choudhury, A.K. Hajra Choudhury, Nirjhar Roy the Elements of Workshop Technology – Vol I & II, 11th Edition, Media Promoters and Publishers, Mumbai, 2001

EVALUATION PATTERN:

Continuous Internal Assessme	nts	
Evaluation of Laboratory Observation,		End Semester Examinations
Record (Rubrics Based Assessments)	Test	
75	25	
100		100
60		40
	100	

3.TECH. – CH – R2(021 – CBCS SEMESTER III	Cent Acad Cour	re fo lemir	· / 9		RIE
U21MAG01	PROBABILITY AND STATISTICS		Cate T	gory P 0	BSC J 0	C 4

Engineer

PRE-REQUISITES:

Nil

COURSE OBJECTIVES:

- To understand the concepts of probability, random variable and distributions that are applicable • in the field of engineering
- To understand the concepts of testing of hypothesis for small and large samples which plays an important role in testing of industrial products
- To understand the concepts in design of experiments in the field of engineering

COURSE OUTCOMES:

Upon completion of the course, the student will be able to

- CO1: Apply probability axioms and the moments of discrete and continuous random variables to core engineering problems (Apply)
- CO2: Use discrete probability distributions including requirements, mean and variance for making decisions (Understand)
- CO3: Compare correlation and linear regression with respect to two dimensional random variables (Understand)
- CO4: Analyze large and small sample tests and perform small sample tests based on Chi-square, t and F distributions (Apply)
- CO5: Design an experiment with proper observations and measurement to get a valid result using various design methods (Understand)

						2: Moderate (Medium)							tantial (High)			
CO5	3	3	-	-	-	-	-	-	-	-	-	-	3	3		
CO4	3	2	-	-	-	-		-	-	-	-	-	2	2		
CO3	3	2	-	-		-	-	-	-	-	•	-	2	2		
CO2	3	2	-	-	-	-	-	-	-	-	-	•	2	2		
CO1	3	2	-	-	-	-		-	-	-	-	1	2	2		
POs COs	P01	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	P012	PSO1	PSO:		

CO-PO MAPPING:

SYLLABUS:

•

UNIT I PROBABILITY 9+3											
Probability – Axioms of probability – Conditional probability – Baye's theorem – Discrete and continuous random variables – Moments – Moment generating functions											
INIT II DISTRIBUTION FUNCTIONS 9+											
Binomial distribution – Polsson distribution – Geometric distribution – Uniform distribution – Exponential distribution – Normal distribution											
UNIT III TWO DIMENSIONAL RANDOM VARIABLES 9											
Joint distributions – Marginal and conditional distributions – Covariance – Correlation and linear regression											
UNIT IV TESTING OF HYPOTHESIS 9+3											
Large sample test for single mean and difference of means - Small sample test: t distribution -											
F distribution – Chi square distribution 9+3											
One way and two-way classifications - Completely randomized design - Randomized block design											
– Latin square design											
Contact Periods:											
Lecture: 45 Periods Tutorial: 15 Periods Practical: - Periods Project - Periods											
Total: 60 Periods											
TEXT BOOKS:											
1. Milton J S and Arnold J C, "Introduction to Probability and Statistics", 4th Edition, Tata McGraw											
Hill, 2008											
2. Gupta S C and Kapoor V K, "Fundamentals of Mathematical Statistics", 11th Edition, S Chand &											
Sons, 2013											
REFERENCES:											
1. Johnson R A, "Miller and Freund's Probability and Statistics for Engineers", 8th Edition, Pearson											
Education, Asia, 2015											
2. Devore J L, "Probability and Statistics for Engineering and the Sciences", 8 th Edition, Cengage Learning, New Delhi, 2014											
3. Ross S M, "Introduction to Probability and Statistics for Engineers and Scientists", 3 rd Edition,											
Elsevier, 2010											

4. Walpole R E, Myers R H, Myers S L and Ye K, "Probability and Statistics for Engineers and Scientists", 10th Edition, Pearson Education, Asia, 2012

-

EVALUATION PATTERN:

	essments	uous Internal Ass	Contin				
		Assessme (100 Mark	Assessment I (100 Marks)				
nternal ments	Written Test	*Individual Assignment / Case Study /		*Individual Assignment / Case Study / Seminar / Project / MCQ			
200	60	40	60	40			
40							
10		Total					

*Role Play/ Group Discussions / Debates / Oral Presentations / Poster Presentations / Technical presentations can also be provided. Course Coordinator can choose any one / two components based on the nature of the course

	SEMESTER III	E Cou	rses		/	
U21CH301	PROCESS CALCULATIONS	Colimba	Later	jory: P	PCC J	c c
		3	1	0	0	4

Enginee

10

PRE-REQUISITES:

Nil

COURSE OBJECTIVES:

- To use the knowledge of laws of chemistry
- To apply mass and energy balance equations for single and network of units
- To understand and apply the basics of calculations in combustion solid, liquid and gaseous fuels

COURSE OUTCOMES:

Upon completion of the course, the student will be able to

CO1: Explain the conversions of basic units and dimensions (Understand)

CO2: Apply the concept of material balance calculations in unit operations (Apply)

CO3: Interpret the parameters of humidity using humidity chart (Analyze)

CO4: Apply the concept of energy balance calculations in unit operations (Apply)

CO5: Solve problems in products of combustion of solid, liquid and gaseous fuels (Apply)

CO-PO MAPPING:

Correlation levels: 1: Slight (Low)				2: Moderate (Medium)				3: Substantial (High)				1)		
CO5	3	3	3	3	3	-	-	-	-	-	-	1	3	3
CO4	3	2	2	2	2	-	-	-	-	-	-	1	2	2
CO3	3	2	2	2	2	-	-	-		-	-	1	2	2
CO2	3	2	2	2	2	•	-	-	-	-	-	1	2	2
CO1	3	2	2	2	2	-	-	-	-	-	-	1	2	2
POs COs	PO1	PO2	PO3	P O4	PO5	P06	P07	P08	PO9	PO10	PO11	PO12	PSO1	PSO2

SYLLABUS:

UNIT I UNITS AND DIMENSIONS

Units, dimensions and conversions – Process variables and properties – Ideal gas laws – Mole fractions and partial pressures – Application of Dalton's and Amagat's law

UNIT II MATERIAL BALANCES

Introduction to material balances: Material balance problems for single units – Stoichiometry and chemical reaction equations – Material balance for process involving reaction – Bypass, purge and recycle operations

Dr. S. Balasubramanian, M.Tech., Ph.D. Professor & Head Department of Chemical Engineering KPR Institute of Engineering & Technology Arasur, Coimbatore - 641 407

9 + 3

UNIT III HUMIDITY

Calculation of absolute humidity – Molal humidity – Relative humidity and percentage humidity – Use ofhumidity in condensation and drying – Humidity chart – Dewpoint

UNIT IV ENERGY BALANCES

Heat capacities of gases as a function of temperature – Mean heat capacity, heat capacity of mixture of gases – Heat capacities of solid and liquids – Kopp's rule and Trouton's rule – Standard heat of reaction – Formation and combustion – Hess's law of heat summation and its application – Energy balance for systems with and without chemical reaction

UNIT V COMBUSTION

Determination of composition by Orsat analysis of products of combustion of solid – Liquid and gas fuels – Calculation of theoretical and excess air requirements – Problems on sulphur and sulphur burning compounds

Contact Periods:

Lecture: 45 Periods Tutorial: 15 Periods Practical: – Periods Project – Period	Lecture:	45 Periods	Tutorial:	15 Periods	Practical: - Periods	Project	- Periods
--	----------	------------	-----------	------------	----------------------	---------	-----------

Total: 60 Periods

TEXT BOOKS:

- 1. Himmelblau DM, Riggs JB., "Basic principles and calculations in chemical engineering", 8th Edition, Prentice Hall International, 2012
- 2. Bhatt, B. L., Vora, S. M., "Stoichiometry", 4th Edition, Tata McGraw-Hill, 2004.

REFERENCES:

EVALUATION PATTERN:

- 1. Felder, R. M., Rousseau, R. W., "Elementary Principles of Chemical processes", 4th Edition, John Wiley & Sons, 2020.
- 2. Narayanan, K. V., Lakshmikutty, B., "Stoichiometry and Process Calculations", 2nd Edition, Prentice Hall of India, New Delhi, 2016.
- Hougen, O. A., Watson & Ragatz, "Chemical Process Principles", Part I, 1st Edition, CBS publishers, 1973.

Assessment (100	Marks)	Assessment II (100) Marks)		
*Individual Assignment / Case Study / Seminar / Project / MCQ	Written Test	*Individual Assignment / Case Study / Seminar / Project / MCQ	Written Test	Total Internal Assessments	End Semester Examinations
40	60	40	60	200	100
				40	60
	То	1	00		

*Role Play/ Group Discussions / Debates / Oral Presentations / Poster Presentations / Technical presentations can also be provided. Coordinator can choose any one / two components based on the nature of the course Professor & Head

Professor & Head Department of Chemical Engineering KPR Institute of Engineering & Technology Arasur, Coimbatore - 641 407

9+3

SEMESTER III

	mbatt	re *	Cate	gory	: PC	C
U21CH302	FLUID MECHANICS FOR CHEMICAL ENGINEERS	L	T	Р	J	C
17		3	1	0	0	4

PRE-REQUISITES:

Nil

COURSE OBJECTIVES:

- To acquire sound knowledge on fluid properties, fluid statics and characteristics during fluid flow
- To know the concepts of flow measurement and fluid machinery
- To understand the mechanisms of fluid flow through pipes

COURSE OUTCOMES:

Upon completion of the course, the student will be able to

CO1: Understand and define various concepts associated with fluid mechanics (Understand)

- **CO2:** Apply fluid statics principles to determine pressure distribution in compressible and incompressible fluids (Apply)
- CO3: Derive various mathematical principles of internal and external viscous flow (Apply)

CO4: Understand principles of flow meters and pumps during fluid transportation (Understand)

CO5: Integrate fluid mechanics parameters by dimensional and similarity analysis (Analyze)

CO-PO MAPPING:

Correlation levels: 1: Slight (Low)				2: Moderate (Medium)					3: Sub	stantia	al (High	ı)		
CO5	3	3	3	3	3	-	-	-	-	-	-	1	3	3
CO4	- 3	2	2	2	2	-	-	-	-	-	-	1	2	2
CO3	3	2	2	2	2	-	-	-	-	-	-	1	2	2
CO2	3	2	2	2	2	-	-	-	-	-	-	1	2	2
CO1	3	2	2	2	2	_	-	-	-	-	-	1	2	2
POs COs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	P011	PO12	PSO1	PSO

SYLLABUS:

UNIT I INTRODUCTION

Introduction: Nature of fluids – Thermodynamic properties of a fluid – Understand incompressible and compressible nature of fluids – Newton's law of viscosity – Newtonian and Non-Newtonian fluids – Basic elements of fluid flow: streamline – Streakline and pathline – Laminar and turbulent flows. Introduction to units and dimensions

Dr. S. Balasubramanian, M.Tech., Ph.D. Professor & Head Department of Chemical Engineering KPR Institute of Engineering & Technology Arasur, Coimbatore - 641 407

70

Fluid Statics – Equilibrium of a fluid element – Pressure variation in a static fluid – Liquid and gas – Applications of fluid statics – U-tube manometer – Inclined U-tube manometer – Fluid Flow – Differential analysis of fluid motion – Equation of continuity derivation – Equation of motion – 1D Bernoulli equation

UNIT III FLUID FLOW: INTERNAL AND EXTERNAL

Internal viscous flow through pipes: Reynolds number regimes – Boundary layer growth into a fully developed flow – Pressure drop under laminar condition (Hagen-Polseuille relation) – Pressure drop in turbulent flow (friction factor) – Major and minor losses due to pipe fittings. External viscous flow over a flat plate – Boundary layer thickness in laminar and turbulent flow (Blasius equation) – Drag force and drag coefficient

UNIT IV FLOW MEASUREMENT, AND TRANSPORTATION

Flow measurement: rotameter — Orifice meter – Venturimeter and Pitot tube (local velocity measurement). Packed bed: derivation of Ergun Equation – Minimum fluidization velocity – Fluidization types and pneumatic conveyors – Valves – Types and schematics – Pumps – Types and performance curves – Suction – Cavitation – Net positive suction head for centrifugal pumps – Introduction and use of compressors and fans

UNIT V DIMENSIONAL ANALYSIS

Dimensional analysis – Principle of dimensional homogeneity – Rayleigh method – Buckingham pi theorem – Non dimensionalization of equation of motion to give Reynolds number – Similarity analysis – Introduction – Types of similarities and use of dimensional analysis for scale-up studies

Contact Periods:

Lecture:	45 Periods	Tutorial:	15 Periods	Practical: - Periods	Project	– Periods

Total: 60 Periods

TEXT BOOKS:

- 1. Noel de Nevers, "Fluid Mechanics for Chemical Engineers", 2nd Edition, McGraw Hill, 1991
- 2. McCabe, Smith and Harriot, "Unit Operations in Chemical Engineering", 7th Edition, McGraw Hill, 2005

REFERENCES:

- 1. White F.M., "Fluid Mechanics", 8th Edition, McGraw Hill, 2017
- 2. Munson, Young, Okiishi, "Fundamentals of Fluid Mechanics", 9th Edition, Wiley, 2021
- James Wilkes and Stacy G Bike, "Fluid Mechanics for Chemical Engineers", 2nd Edition, Prentice Hall 1999.

Dr. S. Balasubramanian, M.Tech., Ph.D. Professor & Head Department of Chemical Engineering KPR Institute of Engineering & Technology Arasur, Coimbatore - 641 407


```
9+3
```


	Contin	uous Internal As	sessments		
Assessme (100 Mar)		Assessme (100 Mar		Total Internal	End Semester
*Individual Assignment / Case Study / Seminar / Project / MCQ	Written Test	*Indivldual Assignment / Case Study / Seminar / Project / MCQ	Written Test	Assessments	Examinations
40	60	40	60	200	100
				40	60
	То	tal		10	0

EVALUATION PATTERN:

*Role Play/ Group Discussions / Debates / Oral Presentations / Poster Presentations / Technical presentations can also be provided. Course Coordinator can choose any one / two components based on the nature of the course

SEMESTER III

		mbati	ire *	Cat	egor	y: PC)C
U21CH303	MECHANICAL OPERATIONS		L	T	Ρ	J	С
			3	0	0	0	3

PRE-REQUISITES:

Nil

COURSE OBJECTIVES:

- To study the characterization of particles
- To analyze the concept of filtration and separation
- To understand the process of mixing and agitation of solids and llquids

COURSE OUTCOMES:

Upon completion of the course, the student will be able to

CO1: Characterization of solids particles (Understand)

CO2: Apply the laws of size reduction in energy calculation (Apply)-

CO3: Explain the concepts settling and sedimentation (Understand)

CO4: Understand the theory of filtration (Understand)

CO5: Explain the concepts mixing and agitation (Understand)

CO-PO MAPPING:

CO4	3	2	2	2	2	-	-	-	_	-	-	1	2	2
CO3	3	2	2	2	2	-	-	-	-	-	-	1	2	2
CO2	3	2	2	2	2	-	-	-	-	-	-	1	2	2
CO1	3	2	2	2	2	-	-		-	-	-	1	2	2
POs COs	P01	P02	PO3	PO4	P05	P06	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2

SYLLABUS:

UNIT I CHARACTERISTICS OF SOLIDS

General characteristics of solids – Different techniques of size analysis – Shape factor – Surface are determination – Estimation of particle size – Screening methods and equipment – Screen efficiency ideal and actual screens

Dr. S. Balasubramanian, M.Tech., Ph.D.

Professor & Head Department of Chemical Engineering KPR Institute of Engineering & Technology Arasur, Coimbatore - 641 407

9

UNIT II SIZE REDUCTION IN SOLDS

Laws of size reduction – Energy relationships in size reduction – Methods of size reduction – Classification of equipment's – Crushers – Grinders and its application in cement industries – Size enlargement – Importance of size enlargement – Principle of granulation – Pelletization and flocculation

UNIT III SETTLING AND SEPARATIONS

Settling: gravity settling – Sedimentation – Thickening, Elutriation: Double cone classifier – Rake classifier – Bowl classifier – Centrifugal separation – Cyclones and hydro cyclones – Electrostatic and magnetic separators – Heavy media separations – Floatation – Jigging

UNIT IV FILTRATION

Filtration: theory of filtration – Batch and continuous filters – Flow through filter cake and filter media –compressible and incompressible filter cakes – Filtration equipments – Selection – Operation – Filter aids

UNIT V MIXING, AGITATION AND STORAGE

Mixing and agitation – Mixing of liquids (with or without solids) – Mixing of powders Selection of suitable mixers – Storage and Conveying of solids – Bunkers – Silos – Bins – Hoppers – Conveyer selection

Contact Periods:

Lecture:	45 Periods	Tutorial:	- Periods	Practical: - Periods	Project:	- Periods
					Total:	45 Periods

TEXT BOOKS:

- 1. McCabe, W.L., Smith, J.C., and Harriot, P., "Unit Operations in Chemical Engineering", 7th Edition, McGraw-Hill, 2005.
- Badger W.L. and Banchero J.T., "Introduction to Chemical Engineering", 1st Edition, Tata McGraw Hill, 1997.

REFERENCES:

- 1. Coulson, J.M. and Richardson, J.F., "Chemical Engineering" Vol.II, 4th Edition, Asian Books Pvt. Ltd., India, 1988.
- Foust, A. S., Wenzel, L.A., Clump, C.W., Naus, L., and Anderson, L.B., "Principles of Unit Operations", 2nd Edition, John Wiley & Sons, 1994.
- 3. Hiroaki Masuda, Kohigashitani and Hideto Yoshida, Powder Technology Handbook, 3rdEdition, CRC Press, 2006.

Dr. S. Balasubramanian, M.Tech., Ph.D. Professor & Head Department of Chemical Engineering KPR Institute of Engineering & Technology Arasur, Coimbatore - 641 407

9

9

9

	Contin	uous Internal As	sessments				
Assessme (100 Marl		Assessme (100 Mar		Totai Internal	End Semeste		
*Individual Assignment / Case Study / Seminar / Project / MCQ	Written Test	*Individual Assignment / Case Study / Seminar / Project / MCQ	Written Test	Assessments	Examinations		
40	60	40	60	200	100		
	Te	tal		40	60		
	0						

EVALUATION PATTERN:

*Role Play/ Group Discussions / Debates / Oral Presentations / Poster Presentations / Technical presentations can also be provided. Course Coordinator can choose any one / two components based on the nature of the course

Enginee

	× C01	pbat	Cate	jory:	ESC	>
U21CH304	ENVIRONMENTAL SCIENCE AND ENGINEERING	L	т	P	J	С
		2	0	0	2	3

PRE-REQUISITES:

Nil

COURSE OBJECTIVES:

- To study the nature and facts about environment
- To find and implement scientific, technological, economic and political solutions to environmental problems
- To study the interrelationship between living organism and environment

COURSE OUTCOMES:

Upon completion of the course, the student will be able to

CO1: Understand the nature and facts about environment (Understand)

- **CO2:** Implement scientific, technological, economic and political solutions to environmental problems (Apply)
- **CO3:** Study the interrelationship between living organism and environment (Understand)
- **CO4:** Appreciate the importance of environment by assessing its impact on the human world (Understand)
- CO5: Envision the surrounding environment, its functions and its value (Understand)

POs														
COs	P01	PO2	PO3	PO4	PO5	P06	P07	P08	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2	1	1	1		3	3	2	3	1	-	1	1	1
CO2	2	1	1	1	-	3	3	2	3	1	-	1	1	1
CO3	2	1	1	1	-	3	3	2	3	1	-	1	1	1
CO4	2	1	1	1	-	3	3	2	3	1	-	1	1	1
CO5	2	1	1	1	-	3	3	2	3	1	-	1	1	1
Correlation	n level:	s:	1: Sli	ght (La	ow)	2: M	oderat	e (Me	dium)		3: Sub	stantia	ıl (High)

CO-PO MAPPING:

Dr. S. Balasubramanian, M.Tech., Ph.D. Professor & Head Department of Chemical Engineering KPR Institute of Engineering & Technology Arasur, Coimbatore - 641 407

6

SYLLABUS:

UNIT I ENVIRONMENT, ECOSYSTEMS AND BIODIVERSITY

Definition – Scope and importance of environment – Need for public awareness – Concept of a ecosystem – Structure and function of an ecosystem – Producers – Consumers and decomposers – Ecological succession – Food chains – Food webs and ecological pyramids – Introduction – Types characteristic features – Structure and function of the (a) forest ecosystem (b) grassland ecosystem (c) desert ecosystem (d) aquatic ecosystems (ponds, streams, lakes, rivers, oceans, estuaries) – Introduction to biodiversity definition: genetic, species and ecosystem diversity – Value of biodiversity: consumptive use, productive use, social, ethical, aesthetic and option values – Biodiversity at global – National and local levels – Hot-spots of biodiversity – Threats to biodiversity – Conservation of biodiversity – Elements of Environmental Science

UNIT II ENVIRONMENTAL POLLUTION

Definition – Causes, effects and control measures of: (a) Air pollution (b) Water pollution (c) Soil pollution (d) Noise pollution (e) Thermal pollution (f) Nuclear hazards – Solid waste management: causes – Effects and control measures of municipal solid wastes – Role of an individual in prevention of pollution – Disaster management: floods, earthquake – Cyclone and landslides – Pollution standards – Particulate matters 10 and 2.5 – Pollution monitoring equipment such as Ozone analyzer – High volumeanalyzer and continuous monitoring system for air and water

UNIT III NATURAL RESOURCES

Forest resources: Use and over-exploitation, deforestation – Water resources: Use and overutilization of surface and ground water, floods, drought – Mineral resources: Use and exploitation, environmental effects of extracting and using mineral resources – Food resources: World food problems – Changes caused by agriculture and overgrazing – Effects of modern agriculture – Fertilizer – Pesticide problems – Energy resources: Growing energy needs – Renewable and non renewable energy sources – Use of alternate energy sources – Land resources: Land as a resource – land degradation – Man induced landslides – Soil erosion and desertification – Role of an individual in conservation of natural resources

UNIT IV SOCIAL ISSUES AND THE ENVIRONMENT

From unsustainable to sustainable development – Urban problems related to energy – Automobile exhaust pollution and social issues – Water conservation, rain water harvesting – Environmental ethics: Issues and possible solutions – Climate change – Global warming – Acid rain – Ozone layer depletion – Nuclear accidents and holocaust – Biological – Chemical and physical conservation and reclamation of land – Environment protection act – Air (Prevention and Control of Pollution) act – Water (Prevention and control of Pollution) act – Wildlife protection act – Forest conservation act – environmental legislation, Environmental audit

UNIT V HUMAN POPULATION AND THE ENVIRONMENT

Population growth, variation among nations – Population explosion – Family welfare program – environment and human health – Human rights – Value education – HIV (AIDS – Women and child Dr. S. Balasubramanian, M. lech., Ph.D. welfare Professor & Head

Department of Chemical Engineering KPR Institute of Engineering & Technology Arasur, Coimbatore - 641 407

77

6

6

6

Contact Periods:

Lecture: 30 Periods Tutorial: - Periods

Practical: - Periods

Total: 60 Periods

Project: 30 Periods

PROJECT TOPICS:

- 1. Nature's value in policy and practice: Evaluating interaction between different ecosystems.
- 2. Demonstrate innovative waste management solutions.
- 3. Strategic plans to conserve natural resources: Role of an individual.
- 4. Chemical Engineers can save the world from climate change: Issues and possible solutions.
- 5. A case study on the effects of population growth, environmental pollution and poverty relationship

TEXT BCOKS:

- 1. Benny Joseph, Environmental Science and Engineering, 1st Edition, Tata McGraw-Hill, New Delhi, 2006.
- 2. Gilbert M.Masters, Introduction to Environmental Engineering and Science, 2nd Edition, Pearson Education, 2004.

REFERENCES:

- 1. Dharmendra S. Sengar, "Environmental law", 2nd Edition, Prentice hall of India Pvt. Ltd, 2007.
- 2. ErachBharucha, Text book of Environmental Studies, 1st Edition, Universities Press (I), Pvt. Ltd., 2015
- 3. Rajagopalan, R, "Environmental Studies From Crisis to Cure", 1st Edition, Oxford University Press, 2005.

Continuo	us Internal	Assessm	ents		End Semester Examinations
Assessment I (The (100 Marks)	Theory Examinations (Examinations will be				
*Individual Assignment / Case Study / Seminar / Mini Project / MCQ	Written Test	Review I	Review II	Review III	conducted for 100 Marks)
40	60	15	25	60	
25			25		50
	50				50
		Total:	100		

EVALUATION PATTERN:

*Role Play/ Group Discussions / Debates / Oral Presentations / Poster Presentations / Technical presentations can also be provided. Course Coordinator can choose any one / two components based on the nature of the course.

B.TECH. – CH – R2	021 CBCS	unitsul C	entre	reering	C K	PRI	D ET
	SEMESTER III	HAN * CO	aden Urse	nic s	echno	iam Bey	
U21CH305	TECHNICAL ANALYSIS LABORATORY	Umb	atore L	T	P	J	, C
			0	0	4	0	2

PRE-REQUISITES:

Nil •

COURSE OBJECTIVES:

- To make the student acquire practical skills in the wet chemical and \ instrumental methods •
- To familiarize the quantitative/qualitative analysis of different categories of chemicals like coal, • ore, phenol, oil, soap and drug.
- · To gain knowledge on the quantitative analysis of heavy metals (iron) and pollutants (water pollutants, COD of water)

COURSE OUTCOMES:

Upon completion of the course, the student will be able to

- CO1: Develop the skills to handle the equipment like UV-visible spectrophotometer, viscometers, nephelometer, bomb calorimeter etc. (Apply)
- CO2: Analyze different chemical like ore, drug, oil, coal, soap etc. using simple techniques (Apply)
- CO3: Attain knowledge on the quantitative as well as qualitative analysis of different categories of chemicals (Apply)
- CO4: Experiment calorimetric analysis technique (Apply)
- CO5: Use the methods for water pollutant analysis (Apply)

CO5 Correlation	3	2	1	- ght (Lo	-	2	2	e (Me	3	-	-	2	2 al (High	1
CO4	3	2	1	-	-	2	2	-	3	-	-	2	2	1
CO3	3	2	1	-	-	2	2	-	3	-	-	2	2	1
CO2	3	2	1	-	-	2	2	-	3	-	-	2	2	1
CO1	3	2	1	-	-	2	2	-	3	-	-	2	2	1
POs COs	PO1	P02	PO3	PO4	P05	P06	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2

CO-PO MAPPING:

LIST OF EXPERIMENTS:

- Determination of Redwood / Saybolt numbers, kinematic viscosity and viscosity index of Lubricating oils.
- 2. Analysis of water (pH, turbidity, conductivity, resistivity, suspended particles)
- 3. Determination of acid value and iodine value of oils.
- 4. Determination of COD of water samples.
- 5. Proximate analysis of coal
- 6. Soap Analysis a. Estimation of total fatty acid b. Estimation of percentage alkali content.
- 7. Estimation of sulphate by digital turbidity meter
- 8. Estimation of phenol.
- 9. Determination of calorific value using bomb calorimeter.
- 10. Determination of iron in water using UV-Visible Spectrophotometer.
- 11. Estimation of Aspirin drug in tablets using pH meter.
- 12. Estimation of manganese in the given sample of ore.

Contact Periods:

Lecture:	- Periods	Tutorial: – Periods	Practical: 60 Periods	Project:	- Periods
				Total:	60 Periods

REFERENCES:

1. S.M.Khopkar, "Environmental pollution analysis", 1st Edition, New age international. 2011

2. N.C Aery, "Manual of environmental analysis", 2nd Edition, Ane books. 2010

3. J.Mendham, "Text book of quantitative chemical analysis", 1st Edition, Pearson education 2008

EVALUATION PATTERN:

Continuous Internal Assessm	ients	
Evaluation of Laboratory Observation,		
Record	Test	End Semester Examinations
(Rubrics Based Assessments)		
75	25	
100		100
60		40
	100	

Dr. S. Balasubramanian, M.Tech., Ph.D. Professor & Head Department of Chemical Engineering KPR Institute of Engineering & Technology Arasur, Coimbatore - 641 407

.TECH. – CH – R	2021 – CBCS	Engin	130	K		
	SEMESTER III	urses	ic)	ech	: ESC	
U21CH306	BASICS OF ELECTRICAL AND ELECTRONICS	alore *	T	P	J	с
		0	0	4	0	2

PRE-REQUISITES:

U21EEG01 - Basics of Electrical and Electronics Engineering . **COURSE OBJECTIVES:**

- To acquire the knowledge on testing of various DC machines and transformers
- To understand the working principle of DC motors and transformers •
- Analyze the performance of semiconductor devices and its characteristics

COURSE OUTCOMES:

Upon completion of the course, the student will be able to

CO1: Analyze the characteristics of DC shunt motor (Analyze)

CO2: Choose the different speed control methods for various applications (Analyze)

- CO3: Estimate the efficiency of transformer & induction motor (Apply)
- CO4: Assess the performance characteristics of PN diode and SCR (Analyze)
- CO5: Identify the applications of half wave and full wave rectifier (Analyze)

Correlation			1: Slic	ght (Lo	14/1	2 · M	oderat	e (Mer	tium)		3 [.] Sub	stantia	l (High)
CO5	3	2	1	-	-	•	-	-	-	-	-	1	1	•
CO4	3	2	1	-	-		-	-	-	-	-	1	1	-
CO3	3	2	1	-	-	-	-	-	-	-	-	1	1	-
CO2	3	2	1	-	-	-	-	-	-	-	-	1	1	•
CO1	3	2	1	-		-	-	-	•	-	-	1	1	•
POs COs	P01	PO2	PO3	PO4	PO5	PO6	P07	P08	PO9	PO10	P011	P012	PSO1	PSO

CO-PO MAPPING:

LIST OF EXPERIMENTS:

- 1. Load test on DC shunt motor.
- 2. Speed control of DC shunt motor.
- 3. Load test on single phase transformer.
- 4. Load test on three phase induction motor-
- 5. Characteristics of PN Junction diode.
- 6. Half wave and full wave rectifier.
- 7. VI characteristics of SCR

Dr. S. Balasubramanian, M.Tech., Ph.D. Professor & Head Department of Chemical Engineering KPR Institute of Engineering & Technology Arasur, Coimbatore - 641 407

12 -

REFERENCES:

1. J. B. Gupta, "A Text book of basic Electrical and Electronics Engineering", 1st Edition, S. K. Kataria and Sons, 2013.

EVALUATION PATTERN:

Continuous Internal Assessm	ients	
Evaluation of Laboratory Observation, Record (Rubrics Based Assessments)	Test	End Semester Examinations
75	25	
100		100
60		40
	100	

B.TECH. – CH – R	2021 – CBCS	Cellar Aca	ntre f	or or	KPR	IET
· · · · · · · · · · · · · · · · · · ·	SEMESTER IV	AZ COU	rses	gory	9	:
U21MA402	PARTIAL DIFFERENTIAL EQUATIONS	L	T	P	J	С
		2	0	0	0	2

PRE-REQUISITES:

Nil •

COURSE OBJECTIVES:

- · To understand the concepts of partial differential equations in diffusion and concentration of chemicals
- To understand the concepts of Fourier series to obtain solution of one-dimensional wave and heat equation
- To understand the concepts Fourier series to obtain solution of two-dimensional heat equations COURSE OUTCOMES:

Upon completion of the course, the student will be able to

- CO1: Analyze the formation of differential equation from the given problems and to solve first order ordinary differential equation by various methods (Apply)
- CO2: Apply a range of techniques to find solutions of standard partial differential equations (Apply)
- CO3: Demonstrate accurate and efficient use of Fourier series analysis techniques and their applications in the theory of PDE's (Apply)
- CO4: Apply Fourier series to solve an initial-boundary value problem for one dimensional wave equation (Apply)
- CO5: Apply Fourier series to solve an initial-boundary value for two dimensional heat equations (Apply)

COs	P01	PO2	PO3	PO4	PO5	P06	PO7	PO8	PO9	PO10	PO11	P012	PSO1	PSO2
CO1	3	2	-	-	-	-	-	-	-	-	-	1	1	1
CO2	3	2	-	-	-	-	-	-	-	-	-	-	1	1
CO3	3	2	-	-	-		-	-	-	-	-	-	1	1
CO4	2	2	-	-	-	-	-	-	-	-	-	-	1	1
CO5	2	2	-	-	-	-	-	-	-	-	-	-	1	1
Correlation	level:	s:	1: Slig	ght (Lo	w)	2: M	oderat	e (Me	dium)		3: Sub	stantia	d (High)

CO-PO MAPPING:

Dr. S. Balasubramanian, M.Tech., Ph.D. Professor & Head Department of Chemical Engineering KPR Institute of Engineering & Technology Arasur, Colmbatore - 641 407

of Enginee

SYLLABUS:

UNIT I FORMATION OF PARTIAL DIFFERENTIAL EQUATIONS 6											
Formation of partial differential equations - Singular integrals - Solutions of standard types of first											
order partial differential equations											
UNIT II SOLUTION OF PARTIAL DIFFERENTIAL EQUATIONS 6											
Lagrange's linear equation - Solution methods for second order homogeneous equations with											
constant coefficients											
UNIT III FOURIER SERIES ⁶											
General Fourier series - Full range series (0,2/) - Half range Sine and Cosine series (0,/)											
UNIT IV ONE DIMENSIONAL BOUNDARY VALUE PROBLEMS 6											
Fourier series solution - Vibration of strings - One dimensional wave equation - One dimensional											
heat flow equation (unsteady state)											
UNIT V TWO-DIMENSIONAL BOUNDARY VALUE PROBLEMS 6											
Fourier series solution Two-dimensional (steady state) heat flow equation (Cartesian form only)											
Separation of variables											
Contact Periods:											
Lecture: 30 Periods Tutorial: - Periods Practical: - Periods Project - Periods											
Total: 30 Periods											

TEXT BOOKS:

- 1. Grewal B S, "Higher Engineering Mathematics", 44th Edition, Khanna Publishers, New Delhi, 2017
- 2. Erwin Kreyzig, "Advanced Engineering Mathematics", 10th Edition, John Wiley & Sons, 2018

REFERENCES:

1. Bail N P and Manish Goyal, "A Textbook of Engineering Mathematics", 9th Edition, Laxmi Publications Pvt Ltd, 2014

2. Peter V O Neil, "Advanced Engineering Mathematics", 7th Edition, Cengage, New Delhi, 2016 **EVALUATION PATTERN:**

	Continuou	s Internal Assess	sments		
Assessment i (100 Marks)		Assessme (100 Mar			-
*Individual Assignment / Case Study / Seminar / Project / MCQ	Written Test	*Individual Assignment / Case Study / Seminar / Project / MCQ	Written Test	Total Internal Assessments	End Semester Examinations
40	60	40	60	200	100
_				40	60
	Tota	100			

Role Play/ Group Discussions / Debates / Oral Presentations / Poster Presentations / Technical presentations can also be provided. Course Coordinator can choose any one / two components based Dr. S. Balasubramanian, M. Tech., Ph.D. on the nature of the course

SEMESTER IV

Engine

	+*Com	atore	Cate	gory	: ESC	;
U21CH401	CHEMICAL ENGINEERING THERMODYNAMICS I	L	T	Ρ	J	С
		2	1	0	0	3

PRE-REQUISITES:

Nil

COURSE OBJECTIVES:

- To impart the basic knowledge on various laws of thermodynamics and PVT behaviour of fluids.
- To provide the knowledge on thermodynamic property relations and their application to fluid flow.
- To show the Power generation and refrigeration processes

COURSE OUTCOMES:

Upon completion of the course, the student will beable to

CO1: Define the basic principles clearly (Understand)

CO2: Apply the PVT behaviour concepts clearly food (Apply)

CO3: Apply second law and analyze the feasibility of systems/devices (Apply)

CO4: Analyze the concept of thermodynamic property relation to fluid flow (Analyze)

CO5: Understand the real gas behaviour (Understand)

CO-PO MAPPING:

Correlation	level:	s:	1: Slig	ght (Lo	w)	2: M	oderat	e (Me	dium)		3: Sub	stantia	al (High)
CO5	1	2	1	-	-	•	-	-	-	-	-	-	1	1
CO4	2	3	1	-	-	•	-	-	-	•	-	-	1	1
CO3	1	1	1	-	-	-	-	-	-	-	-	-	1	1
CO2	2	2	2	•	-	-	-	-	•	-	•	-	1	1
CO1	2	1	•	-	-	-	-	-	-	-	-	-	1	1
COs	PO1	PO2	PO3	P04	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO:
POs														

SYLLABUS:

UNIT I INTRODUCTION

Scope of Thermodynamics – Definition of system – Control volume, state and path function –Equilibrium – Reversibility – Energy – Work and heat – Zeroth law – Temperature scales

UNIT II PVT BEHAVIOUR OF FLUIDS

PVT behaviour of fluids – Mathematical representation of PVT behaviour – Generalized compressibility factor correlations – Generalized equations of state

UNIT III SECOND AND THIRD LAW OF THERMODYNAMICS

Joule's experiment – Internal energy – First law – Energy balance for closed systems an Mass Andrech., Ph.D. energy balance for open systems Statements of the second law of thermodynamics sor & Head Department of Chemical Engineering KPR Institute of Engineering & Technology

Arasur, Coimbatore - 641 407

_

6+3

6+3

6+3

B.TECH. - CH - R2021 - CBCS

Heat engine and Refrigerator - Carnot cycle and Carnot theorems - Thermodynamic temperature scale Entropy and its calculation - Second law of thermodynamics for a control volume - Third law of thermodynamics - Entropy from a microscopic point of view

THERMODYNAMIC PROPERTY RELATIONS UNIT IV

Thermodynamic potentials - Internal energy - Enthalpy - Helmholtz free energy - Gibbs free energy - Thermodynamic property relations - Maxwell relations - Partial derivatives and Jacobian method -Residual properties - Thermodynamic property tables and diagrams

POWER GENERATION AND REFRIGERATION PROCESSES 6+3 UNIT V

Duct flow of compressible fluids - Compression and expansion processes - Steam power plant -Internal combustionengines - Jet and rocket engines

Contact Periods:

Lecture: 30 Periods	Tutorial: 15 Periods	Practical: - Periods	Project: - Periods
			Total: 45 Periods

TEXT BOOKS:

- Smith, J.M., Van Ness, H.C and Abbot M.M "Introduction to Chemical Engineering 1. Thermodynamics ", 6th Edition McGraw Hill Publishers, 2003.
- Narayanan, K.V. A Textbook of Chemical Engineering Thermodynamics, 1st Edition, Prentice Hall 2. India, 2004

REFERENCES:

- Kyle, B.G., "Chemical and Process Thermodynamics 3rd Edition", Prentice Hall of India Pvt. 1. Ltd., 1999.
- Elliott J.R., Lira, C.T., "Introductory chemical engineering thermodynamics", 1st Edition, Prentice 2. Hall, 1998.
- Rao, Y.V.C., "Chemical Engineering Thermodynamics" 1st Edition, Universities Press, 2005. 3.

	Contin	uous Internal As	sessments			
	Assessment I (100 Marks)		ent II ks)	Total Internal	End Semester	
*Individual Assignment / Case Study / Seminar / Project / MCQ	Written Test	*Individual Assignment / Case Study / Seminar / Project / MCQ	Written Test	Assessments	Examinations	
40	60	40	60	200	100	
		4-1		40	60	
	10	tal	100			

EVALUATION PATTERN:

*Role Play/ Group Discussions / Debates / Oral Presentations / Poster Presentations / Technical presentations can also be provided. Course Coordinator can choose any one / two components based on the nature of the course Dr. S. Balasubramanian, M. Tech., Ph.D.

Professor & Head Department of Chemical Engineering KPR Institute of Engineering & Technology Arasur, Coimbatore - 641 407

021 – CBCS SEMESTER IV	X Co	entro aden Urse	- IA.	O E Techn	RIE	Г	
	oimba	tore	Cate	gory	ESC		S) D
ENGINEERING MATERIALS		L	Т	Р	J	C	
		3	0	0	0	3	

PRE-REQUISITES:

U21CH402

Nil

COURSE OBJECTIVES:

- To provide the knowledge on the properties of materials and choose as per requirement
- To describe the making, shaping and treating processes of alloys
- To identify the various properties of special materials like ceramics, refractories, and polymers COURSE OUTCOMES:

Upon completion of the course, the student will be able to

CO1: Choose materials required for chemical plants based on their properties (Apply)

- CO2: Understand various processes associated with metals and their alloys (Understand)
- CO3: Understand properties and uses of polymers and fibers (Understand)

CO4: Know the constituents and use of various refractory materials (Understand)

CO5: Analyze various novel materials including shape memory alloys and explain the reason for their novelty (Anayze)

CO-PO MAPPING:

POs COs	P01	PO2	PO3	P04	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	2	-	2	1	2	-	1	1		-	1	1
CO2	3	2	2	-	2	1	2	-	1	1		-	1	1
CO3	3	2	2	-	2	1	2	-	1	1	•	-	1	1
CO4	3	2	2	-	2	1	2	-	1	1	-	-	1	1
CO5	3	2	2	-	2	1	2	-	1	1	-	-	1	1
Correlation	levels	s:	1: Slig	ght (Lo	w)	2: M	oderat	e (Med	dium)		3: Sub	stantia	l (High)

SYLLABUS

UNIT I PROPERTIES AND SELECTION OF MATERIALS

Properties of materials: physical (density) – Thermal (conductivity) – Mechanical (stress-strain diagram) –Electrical (conductivity, dielectric constant) and chemical properties – Methods to choose process materials relevant for a chemical plant

UNIT II METALS AND ALLOYS

Metals – Making – Shaping and treating processes associated with Iron – Steel – Aluminum – Aluminum alloys – Copper – Copper alloys – Nickel alloys – Chromium alloys and Titanium alloys

Dr. S. Balasubramanian, M.Tech., Ph.D. Professor & Head Department of Chemical Engineering KPR Institute of Engineering & Technology Arasur, Coimbatore - 641 407

9

9

UNIT III POLYMERS: NATURAL AND SYNTHETIC

Rubber and other natural elastomers – Properties and uses of synthetic polymers such as poly vinyl chloride (PVC) – Polyesters – Nylon – Teflon – Properties and uses of natural fibers like silk – jute – Cotton and other synthetic fibers

UNIT IV CERAMICS AND REFRACTORIES

Classification – Manufacture and properties of refractive materials – Constituents and applications ofsilica – Alumina – Tar – Dolomite and other special refractories such as glasses – Constituents of cement

UNIT V NEW MATERIALS

Composites – Classification – Types of matrix and reinforcement materials – Processing methods and applications of composites – Smart materials such as piezoelectric – Electro strictive – Fibre optics and shape memory alloys – Introduction to biomaterials

Contact Periods:

Lecture: 45 Periods	Tutorlal: - Periods	Practical: - Periods	Project:	- Periods
			Total:	45 Periods

TEXT BOOKS:

- O.P. Khanna, "A Textbook of Material Science and Metallurgy", 1st Edition, Dhanpat Rai Publications, New Delhi, 1999.
- 2. W.D. Callister Jr., "Materials Science and Engineering", 5th Edition, John Wiley & Sons, 2001.
- 3. V. Raghavan, "Physical Metallurgy: Principles and Practice", 3rd Edition, PHI Learning, 2015.

REFERENCES:

- 1. Sidney Avner, "Introduction to Physical Metallurgy", 2nd Edition, McGraw Hill Education, 2017.
- 2. W.C. Richards, "Engineering Materials Science", 1st Edition, Literary Licensing, LLC, 2012.
- 3. H. VanVlack, "Elements of Materials Science and Engineering", 6th Edition, Pearson Education India, 2002.

	Contin	uous Internal As	sessments		
Assessme	nt l	Assessme	ent II		
(100 Marks)		(100 Mar	ks)	Total Internal	End Semester
*Individual		*Individual		Assessments	Examinations
Assignment /	151-166-0-0	Assignment /	Written		
Case Study /	Written	Case Study /			
Seminar /	Test	Seminar /	Test		
Project / MCQ		Project / MCQ			
40	60	40	60	200	100
	<u>.</u>			40	60
	To	otal		10	0

EVALUATION PATTERN:

*Role Play/ Group Discussions / Debates / Oral Presentations / Poster Bresentations / Tachnicalch., Ph.D. presentations can also be provided. Course Coordinator can choose any one / two components based on the nature of the course Department of Chemical Engineering

Department of Chemical Engineering KPR Institute of Engineering & Technology Arasur, Coimbatore - 641 407

9

9

q

Centre for Courses
Compare + Category: PCC

SEMESTER IV

	JEMES I EK IV	In	600	/		
		vatore *	Cate	gory	PCC	2
U21CH403	MASS TRANSFER I	L	Т	P	J	С
		3	1	0	0	4

PRE-REQUISITES:

Nil

COURSE OBJECTIVES:

- To learn and determine mass transfer rates under laminar and turbulent conditions and apply these concepts in the design of humidification columns, dryers and crystallizers
- To develop knowledge for application of mass transfer principles
- · To impart the significance of mass transfer principles used in Chemical Engineering

COURSE OUTCOMES:

Upon completion of the course, the student will be able to

CO1: Understand the fundamentals, types and mechanism of mass transfer operations (Understand)

- CO2: Understand the theories of mass transfer and the concept of inter- phase mass transfer (Understand)
- CO3: Understand the basics of humidification process and its applications. (Understand)
- CO4: Understand the concept and mechanism of drying operations (Understand)
- **CO5:** Formulate and solve material balances for unit operations such as humidification, drying and crystallization operations (Understand)

Correlation	ievels	5:	1: Slig	ght (Lo	w)	2: M	oderat	e (Med	dium)		3: Sub	stantia	ıl (High)
CO5	3	1	1	1	-	-	-	-	-	-	-	1	1	1
CO4	3	1	1	-	-	-	-	-	-	-	-	1	1	1
CO3	3	1	1	-	-	ц.	-	-	-	-	-	1	1	1
CO2	3	1	1	-	-	-	-	-	-	-	-	1	1	1
CO1	3	2	1	1	-	-	-	-	-	-	-	1	1	1
POs COs	P01	PO2	PO3	PO4	P05	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO

CO-PO MAPPING:

SYLLABUS

UNIT I MOLECULAR DIFFUSION

9+3

9+3

Introduction to mass transfer operations – Molecular diffusion in gases – Liquids and solids – Diffusivity measurement and prediction; multi-component diffusion

UNIT II CONVECTIVE TRANSFER AND INTERPHASE MASS TRANSFER

analogies – Application of correlations for mass transfer coefficients – Inter phase mass transfer – Dr. S. Balasubramanian, M.Tech., Ph.D. Professor & Head Department of Chemical Engineering KPR Institute of Engineering & Technology Arasur. Coimbatore - 641 407

relationship between individual and overall mass transfer coefficients - NTU and NTP concepts, Stage-wise and differential contractors

HUMIDIFICATION OPERATIONS UNIT III

Humidification - Equilibrium - Humidity chart - Adiabatic and wet bulb temperatures; humidification operations; theory and design of cooling towers - Dehumidifiers and humidifiers using enthalpy transfer unit concept

UNIT IV DRYING

Drying - Equilibrium - Classification of dryers - Batch drying - Mechanism and time of cross through circulation drying - Theoretical estimation of drying rate and time - Continuous dryers - Material and energy balance - Advance drying techniques such as freeze drying - Microwave drying

UNIT V CRYSTALLIZATION

A Crystal geometry - Equilibrium - Yield and purity of products - Theory of super saturation -Nucleation and crystal growth - Classification of crystallizers - Design of batch crystallizers and continuous crystallizers

Contact Periods:

Lecture: 45 Periods	Tutorial: 15 Periods	Practical: - Periods	Project:	- Periods
			Total:	60 Periods

TEXT BOOKS:

- 1. Treybal, R. E., "Mass Transfer Operations", 3rd Edition, McGraw-Hill, 2007 (reprint).
- 2. Geankoplis, C.J., "Transport Processes and Unit Operations", 4th Edition, Prentice Hall Inc., 2003

REFERENCES:

- 1. McCabe, W.L., Smith, J.C., and Harriot, P., "Unit Operations in Chemical Engineering", 7th Edition, McGraw-Hill, 2005.
- 2. Coulson, J.M. and Richardson, J.F., "Chemical Engineering" Vol. I and II, 4th Edition, Asian Books Pvt. Ltd., 1998.
- 3. Seader J.D. and Henley E.J., "Separation Process Principles", 2nd Edition, John Wiley, 2006.

EVALUATION PATTERN:

	Continuo	ous Internal Assessm	ients				
Assessment (100 Marks)		Assessment (100 Marks)			End Semester		
*Individual Assignment / Case Study / Seminar / Mini Project / MCQ	Written Test	*Individual Assignment / Case Study / Seminar / Mini Project / MCQ	Written Test	Total Internal Assessments	Examinations		
40	60	40	60	200	100		
	-	4.0		40	60		
	То	tal		1	00		

*Role Play / Group Discussions / Debates / Oral Presentations / Poster Presentations / Technical presentations can also be provided. Course Coordinator can choose any one / two components based on the nature of the course Dr. S. Balasubramanian, M.Tech., Ph.D.

Professor & Head Department of Chemical Engineering KPR Institute of Engineering & Technology Arasur, Coimbatore - 641 407

9+3

9+3

B,TECH. – CH – R2	2021 – CBCS	Centre Acado	for	KP	RIE	r
	SEMESTER IV	Courses	nic /	gory:	PCC	:
U21CH404	PROCESS HEAT TRANSFER	- Mostore	T	P	J	C
		2	1	0	2	4

PRE-REQUISITES:

Nil

COURSE OBJECTIVES:

- · To understand the fundamental concepts of heat transfer viz., conduction, convection, radiation
- To understand and apply the concepts of boiling, condensation and radiative heat transfer
- To develop sound practical knowledge on different types of heat transfer equipment

COURSE OUTCOMES:

Upon completion of the course, the student will be able to

- **CO1:** Understand the fundamental concepts of heat transfer and steady state heat conduction in solids (Understand)
- **CO2:** Explain the convective heat transfer and heat transfer coefficients for laminar and turbulentflows (Understand)
- **CO3:** Describe the heat transfer in boundary layer and heat transfer involving phase change (Understand)
- **CO4:** Understand the radiative heat transfer including black body radiation and Kirchoff's law (Understand)
- CO5: Calculate and use overall heat transfer coefficients in designing heat exchanger equipment (Analyze)

Correlation levels: 1: Slight (Low)				2: Moderate (Medium)				3: Substantial (High)						
CO5	3	2	2	2	2	-	1	-	1	1	2	2	2	2
CO4	3	2	2	2	2	-	1	-	1	1	2	2	2	2
CO3	3	2	2	2	2	-	1	-	1	1	2	2	2	2
CO2	3	2	2	2	2	-	1	-	1	1	2	2	2	2
CO1	3	2	2	2	2	-	1	-	1	1	2	2	2	2
POs COs	P01	PO2	PO3	PO4	P05	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO:

CO-PO MAPPING:

SYLLABUS

UNIT I INTRODUCTION AND CONDUCTION

6+3

Importance of heat transfer in Chemical Engineering operations – Modes of heat transfer – One dimensional steady state heat conduction through plane and composite walls, hollow cylinder and spheres – Thermal conductivity measurement – Effect of temperature on thermal conductivity – Heat transfer in extended surfaces – Transient heat conduction Professor & Head

Department of Chemical Engineering KPR Institute of Engineering & Technology Arasur, Coimbatore - 641 407

A Engine

KPRIET

B.TECH. - CH - R2021 - CBCS

UNIT II HEAT TRANSFER BY CONVECTION

Concepts of heat transfer by convection – Natural and forced convection – Hydrodynamic and thermal Boundary layers – Analogies between transfer of momentum and heat – Reynold's analogy – Prandtl and Coulburn analogy – Dimensional analysis in heat transfer – Heat transfer coefficient for flow through a pipe – Flow past flat plate and flow through packed beds and fluidized beds

UNIT III HEAT TRANSFER BY PHASE CHANGE

Heat transfer to fluids with phase change – Heat transfer from condensing vapours – Drop wise and film wise condensation – Nusselt equation for vertical and horizontal tubes – Condensation of super-heated vapours – Heat transfer to boiling liquids – Mechanism of bolling – Nucleate boiling and film boiling

UNIT IV EVAPORATION AND RADIATION

Evaporation – Single and multiple effect operation – Material and Energy balance in evaporators – Boiling point elevation – Duhring's rule – Radiation heat transfer – Black body radiation – Emissivity –Stefan – Boltzman law – Plank's law – Radiation between surfaces

UNIT V HEAT EXCHANGERS

Heat Exchangers – Classification and design – Overall and individual film coefficients – Mean temperature difference – LMTD correction factor for multiple pass exchanger – NTU and efficiency of heat exchangers

LIST OF EXPERIMENTS

- 1. Demo by experiment difference in thermal conductivity of a metal, polymer and refractory
- 2. Build a composite wall to maintain room temperature 5°C less than outer temperature
- 3. Energy analysis and comparison of a natural and convective drying equipment
- 4. Perform energy analysis or build a prototype of a 10 kg/day coconut jaggery evaporator by using microwave radiation
- 5. Critically analyze: solar irradiation for electricity generation in India Is insufficient
- 6. Cross cut section of a double pipe, single / multi pass shell and tube heat exchanger
- 7. Perform heat energy balance for a sodium hydroxide manufacturing plant involving multi effect evaporator or a petroleum distillation column.
- 8. Optimize heat energy in a chemical process plant using PINCH technology
- 9. Design a passive cooling of an electric vehicle battery with fins
- 10. Critically review the list of text and reference books available for heat transfer in Library
- 11. Perform a literature review on recent trends in heat transfer research
- 12. Critically analyze the tools used in recent publications in Journal of Heat Transfer
- 13. Develop a virtual heat transfer lab experiment in MATLAB / python / simulink
- 14. Create a 2 minute 3D animation video to explain an heat transfer concept in AutoDesk / Maya / Blender
- 15. Write a MATLAB / SCILAB / PYTHON / OCTAVE CODE to solve ordinary or partial derivative equation involving temperature

Dr. S. Balasubramanian, M.Tech., Ph.D. Professor & Head Department of Chemical Engineering KPR Institute of Engineering & Technology Arasur, Coimbatore - 641 407

6+3

6+3

6+3

Contact Periods:

Lecture: 30 Periods Tutorial: 15 Periods Practica	: – Periods Projec	: 30 Periods
---	--------------------	--------------

Total: 75 Periods

TEXT BOOKS:

- 1. Holman, J. P., "Heat Transfer", 10th Edition, McGraw Hill, 2010.
- 2. Ozisik, M. N., "Heat Transfer: A Basic Approach", 5th Edition, McGraw-Hill, 1984.

REFERENCES:

- 1. McCabe, W.L., Smith, J.C., and Harriot, P., "Unit Operations in Chemical Engineering", 6th Edition, McGraw-Hill, 2001.
- 2. Coulson, J.M. and Richardson, J.F., "Chemical Engineering" Vol. I, 4th Edition, Asian Books Pvt. Ltd., India, 1998.

EVALUATION PATTERN:

Continu	ous Interna	I Assessme	ents		End Semester Examinctions
Assessment I (Theo (100 Marks)	ry)		Assessmeni (Project) (100 Marks	Theory Examinations	
*Individual Assignment / Case Study / Seminar / Mini Project / MCQ	Written Test	Review I	Review II	Review III	(Examinations will be conducted for 100 Marks)
40	60	15	25	60	
25	50				
	50				
		Total: 1	00		

*Role Play / Group Discussions / Debates / Oral Presentations / Poster Presentations / Technical presentations can also be provided. Course Coordinator can choose any one / two components based on the nature of the course

	SEMESTER IV	* Oims	Cater	jory:	PCC	2
U21CH405	FLUID MECHANICS LABORATORY	L	T	Ρ	J	с
		0	0	2	0	1

PRE-REQUISITES:

U21CH302 - Fluid Mechanics for Chemical Engineers .

COURSE OBJECTIVES:

- To calibrate flow meters
- To find pressure drop for various flow situations .
- To determine pump characteristics •

COURSE OUTCOMES:

Upon completion of the course, the student will be able to

CO1: Understand and select flow meters (Understand)

CO2: Understand the flow behaviour in open channels and drum (Understand)

CO3: Select pumps for transportation of fluids based on their characteristics (Apply)

CO4: Compare pressure loss during fluid flow in various situations (Analyze)

CO5: Determine viscosity of unknown fluids (Evaluate)

CO-PO MAPPING:

POs COs	PO1	PO2	PO3	PO4	P05	PO6	P07	PO8	PO9	PO10	P011	PO12	PSO1	PSO2
CO1	3		1	2	-	-	-	-	1	-	-	1	2	1
CO2	3	-	-	2	-	-	-	-	1	-	-	-	2	1
CO3	3	-	1	2	-		-	-	1	-	-	-	2	1
CO4	3	-	-	3	-		-	-	1	-	-	-	2	1
CO5	3	-	-	3	-		•	-	1	-	-	1	2	1
Correlation	n level:	s:	1: Sli	ght (Lo	w)	2: M	oderat	e (Me	dium)		3: Sub	ostantia	al (High	1)

LIST OF EXPERIMENTS

- 1. Viscosity measurement of fluids
- 2. Drag studies on falling spherical particle
- 3. Calibration of constant head flow meters
- 4. Calibration of variable head flow meters
- 5. Calibration of weirs and notches
- 6. Open drum orifice and draining time
- 7. Pressure drop for flow through straight pipe
- 8. Pressure drop for flow through helical and spiral coil

Enginee

Centre for

Academic

Dr. S. Balasubramanian, M.Tech., Ph.D. Professor & Head Department of Chemical Engineering KPR Institute of Engineering & Technology Arasur, Colmbatore - 641 407

94

- 9. Losses in pipe fittings and valves
- 10. Characteristic curves of pumps (centrifugal / gear / reciprocating)
- 11. Pressure drop in packed bed column
- 12. Pressure drop in fluidized bed

Contact Periods:

Lecture:	Periods	Tutorial: - Periods	Practical: 30 Periods	Project:	- Periods
				Total:	30 Periods

REFERENCES:

- 1. Noel de Nevers, "Fluid Mechanics for Chemical Engineers", 2nd Edition, McGraw Hill, 1991.
- 2. McCabe, Smith and Harriot, "Unit Operations in Chemical Engineering", 7th Edition, McGraw Hill, 2005.
- 3. White F.M., "Fluid Mechanics", 8th Edition, McGraw Hill, 2017
- 4. Munson, Young, Okiishi, "Fundamentals of Fluid Mechanics", 9th Edition, Wiley, 2021

EVALUATION PATTERN:

Continuous Internal Assessments					
Evaluation of Laboratory Observation, Record (Rubrics Based Assessments)	End Semester Examinations				
75	25				
100		100			
60	40				
100		•			

SEMESTER IV

Engine

Centre (

		*Coi	Cate	gory:	: PCC	2
U21CH406	MECHANICAL OPERATIONS LABORATORY	Pbat	re *	Р	J	c
		0	0	2	0	1

PRE-REQUISITES:

U21CH303 - Mechanical Operations

COURSE OBJECTIVES:

- To calibration of the units
- To determine the Elutriator Characteristics
- To find the size separation of Sub Sieving

COURSE OUTCOMES:

Upon completion of the course, the student will be able to

CO1: Understand and select size separation (Understand)

CO2: Understand the filtration studies (Understand)

- CO3: Apply reduction ratio in crusher and mill (Apply)
- CO4: Compare Filtration and separation (Analyze)

CO5: Determine characteristic of Elutriator (Evaluate)

CO-PO MAPPING:

Correlation		00		ght (Lo		0. M	oderat	a (h4a)	ا مصر نا		2. Cub	'	- al (High	
CO5	3			3	_	_	-		1	-		1	2	1
CO4	3	-	-	3	-	-	-	-	1	-	-	-	2	1
CO3	3	-	1	2	÷	-	-	-	1	-	-	-	2	1
CO2	3	-	-	2	-	-	+	-	1	-	-	-	2	1
CO1	3	-	1	2	-	-	-	-	1	-	-	1	2	1
POs COs	P01	PO2	PO3	PO4	PO5	р06	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO:

LIST OF EXPERIMENTS

- 1. Sieve analysis
- 2. Size separation using Sub-Sieving
- 3. Batch filtration studies using a Leaf filter
- 4. Batch filtration studies using a Plate and Frame Filter press
- 5. Characteristics of batch Sedimentation
- 6. Reduction ratio in Jaw Crusher
- 7. Reduction ratio in Ball mill
- 8. Separation characteristics of Cyclone separator

Dr. S. Balasubramanian, M.Tech., Ph.D. Professor & Head Department of Chemical Engineering KPR Institute of Engineering & Technology Arasur, Coimbatore - 641 407

- 9. Determination of specific surface area using air permeability set up
- 10. Separation characteristics of Elutriator

Contact Periods:

Lecture: - Periods Tutorial: - Periods Practical	: 30 Periods	Project:	– Periods
--	--------------	----------	-----------

Total: 30 Periods

REFERENCES:

- 1. McCabe, W.L., Smith, J.C., and Harriot, P., "Unit Operations in Chemical Engineering", McGraw-Hill, 7th Edition, 2005.
- Badger W.L. and Banchero J.T., "Introduction to Chemical Engineering", Tata McGraw Hill. 5th Edition, 1997.
- 3. Coulson, J.M. and Richardson, J.F., "Chemical Engineering" Vol II, Asian Books Pvt.Ltd., India, 4th Edition, 1988.
- 4. Foust, A. S., Wenzel, L.A., Clump, C.W., Naus, L., and Anderson, L.B., "Principles of Unit Operations", John Wiley & Sons, 2nd Edition, 1994.

EVALUATION PATTERN:

Continuous Internal Assessm	ients	
Evaluation of Laboratory Observation,		
Record	End Semester Examinations	
(Rubrics Based Assessments)		
75	25	
100		100
60	40	
	100	

May

SEMESTER IV

		olimbato G	ateg	огу:	HSM	C
U21SSG01	SOFTSKILLS - I	L	Т	Р	J	c
		0	0	2	0	1

PRE-REQUISITES:

Nil

COURSE OBJECTIVES:

- To inculcate potential skills and to work as a team effectively.
- To develop confidence and enhance interpersonal skills.

COURSE OUTCOMES:

Upon completion of the course, the student will be able to

CO1: Enhance decision making and negotiation skills (Analyze)

CO2: Maintain open, effective, and Professional Communication (Apply)

CO-PO MAPPING:

POs COs	P01	P02	PO3	PO4	P05	P06	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	-	-	-	-	-	-	-	-	-	3	-	2	2	1
CO2	-		-	-	-	-	-	-	2	3	-	1	2	1
Correlation	n level:	3:	1: Sli	ght (Lo	w)	2: M	oderat	e (Me	dium)		3: Sub	stantia	l (High)

SYLLABUS:

UNIT I VERBAL COMPETENCE			10
Verbal Analogy - Spotting Errors - Ordering of Ser	ntences - Cloze Test -	Effective L	istening –
Reading Comprehension			
UNIT II EFFECTIVE COMMUNICATION			10
Overcoming Communication Barriers - Body Lang	uage and its Etiquettes	- Context	ual
Communication - 7C's of Communication - Listeni	ing to Documentaries		
UNIT III INTERPERSONAL SKILLS			10
Group Decision Making - Paralanguage - Negotial	tion Skills – Preparation	a & Planning	g, Bargaining &
Problem Solving -Self Grooming - SWOT Analysis	3		
Contact Periods:			
Lecture: - Periods Tutorial: - Periods F	Practical 30 Periods	Project:	- Periods
		Total:	30 Periods

TEXT BOOKS:

- 1. Prashant Sharma, "Soft Skills: Personality Development for Life Success", 1st Edition, BPB Publications, 2022.
- 2: Suresh Kumar E, Sreehari P and Savithrl J, "Communication Skills and Soft Skills: An Integrated Approach", 1st Edition, Dorling Kindersley, 2011.

REFERENCES:

- 1. Jeff Butterfield, "Problem Solving and Declsion Making", 2nd Edition, Course Technology, 2010.
- 2. Wushow Bill Chou, "Fast-Tracking your Career: Soft Skills for Engineering and IT Professionals", 1st Edition, IEEE Press, 2013.

EVALUATION PATTERN:

Continuous Internal Assessments	Marks
Test - I	50
Test - II	50
Total	100

CBCS	SEMESTER V	ACCOL	Engin Engin Intre Engin Engin	for	and Techno	KPR	
		oimba	tore	Cate	gory	: BSC	;
COMPU	TATIONAL TECHNIQUES		L	Т	P	J	С

2

0

Ð

Ô.

2

SEMESTER V

PRE-	REOL	JISIT	'ES:

U21MA502

Nil

COURSE OBJECTIVES:

- To understand the concepts of direct and iterative method for solving algebraic and transcendental equations using numerical methods of interpolation
- To obtain the solution of differentiation and integration using standard numerical techniques in ٠ solving kinematics simulation and composite materials
- To understand the concepts of ordinary and partial differential equations in elastic beams and ٠ elastic bars using numerical techniques

COURSE OUTCOMES:

Upon completion of the course, the student will be able to

- CO1: Apply the concepts of algebraic and transcendental equations to solve core engineering problems (Understand)
- CO2: Use concepts of interpolation for mathematical problems arising in various field (Understand)
- CO3: Utilize differentiation and integration methods for finite difference and finite element method (Understand)
- CO4: Solve initial value problems of ordinary differential equations using numerical techniques (Understand)
- CO5: Use finite difference techniques, implicit and explicit methods for solving boundary value problem of partial differential equations (Understand)

CO-PO MAPPING:

POs COs	P01	PO2	PO3	PO4	PO5	P06	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2		-	-	-	-	-	-		-	1	2	2
CO2	3	2	-	-	-	-	-	-	-	-	-	-	2	2
CO3	3	2	-	-	-	-	-	-	-	-	-	-	2	2
CO4	3	2	-	-	-	-	-	-	-	-	-	-	2	2
CO5	3	3	-	-	-	-	-	-	-	-	-	-	3	3
Correlation	n level:	s:	1: Slig	ght (Lo	ow)	2: M	oderat	e (Me	dium)		3: Sub	stantia	al (High)

SYLLABUS:

UNIT I SYSTEM OF EQUATIONS

Newton Raphson method - Solution of linear system of equations - Gauss elimination method -Gauss Jordan method - Gauss Seidel method

Dr. S. Balasubramanian, M.Tech., Ph.D. Professor & Head **Department of Chemical Engineering** KPR Institute of Engineering & Technology Arasur, Coimbatore - 641 407

6

6

6

6

INTÉRPOLATION UNIT II

Interpolation with equal intervals - Newton's forward and backward difference formulae -Interpolation with unequal intervals - Lagrange interpolation

NUMERICAL DIFFERENTIATION AND INTEGRATION UNIT III

Approximation of derivatives using interpolation polynomials - Numerical integration using Trapezoidal rule - Simpson's 1/3 rule - Evaluation of double integrals by Trapezoidal rule

NUMERICAL SOLUTION OF ORDINARY DIFFERENTIAL EQUATIONS UNIT IV Taylor's series method - Euler's method - Modified Euler's method - Fourth order Runge-Kutta method for solving first order equations

A NUMERICAL SOLUTION OF PARTIAL DIFFERENTIAL EQUATIONS UNIT V Finite difference method - Poisson's equations on rectangular domain - One dimensional heat flow equation by explicit and Implicit (Crank Nicholson) methods - 1D wave equation by explicit method

Contact Periods:

Lecture: 3	30 Periods	Tutorial: – Periods	Practical: - Periods	Project	– Periods
				Total:	30 Periods

TEXT BOOKS:

- 1. Burden R L and Faires J D, "Numerical Analysis", 9th Edition, Cengage Learning, 2016
- 2. Grewal B S and Grewal J S, "Numerical Methods in Engineering and Science", 10th Edition, Khanna Publishers, New Delhi, 2015

REFERENCES:

EVALUATION PATTERN:

- 1. Jain M K, Iyengar S R K, and Jain R K, "Numerical Methods for Scientific and Engineering computation", 6th Edition, New Age International Publishers, 2019
- 2. Sastry S S, "Introductory Methods of Numerical Analysis", 5th Edition, PHi Learning Pvt. Ltd, 2012
- 3. Steven C Chapra and Raymond P Canale, "Numerical Methods for Engineers", 7th Edition, Tata McGraw-Hill, New Delhi, 2016

Continuous Internal Assessments Assessment II Assessment | (100 Marks) (100 Marks) End Semester Total Internal *Individual *Individual **Examinations** Assignment / Case Written Written Assignment / Case Assessments Study / Seminar / Test Study / Seminar / Test Project / MCQ Project / MCQ 100 200 60 40 60 40 60 40 Total 100

*Role Play/ Group Discussions / Debates / Oral Presentations / Poster Presentations / Technical presentations can also be provided. Course Coordinator can choose an Sore al two components basedech., Ph.D. Professor & Head on the nature of the course

Department of Chemical Engineering KPR Institute of Engineering & Technology Arasur, Coimbatore - 641 407

B.TECH. – CH -	R2021 - CBCS	Eng	ineen		RIE	Г
	SEMESTER V	urs ours	re for Emic	echy	nBeyond	
U21CH501		bato	Cate	gory: P	PC0	;
		3	1	0	0	

PRE-REQUISITES:

• NII

COURSE OBJECTIVES:

- The behavior of fluids under PVT conditions and also apply them for practical purpose
- The concepts of thermodynamics
- The principles of refrigeration and to evaluate their performance

COURSE OUTCOMES:

Upon completion of the course, the student will be able to

CO1: Apply mass balances to flow processes (Apply)

CO2: Understand the entropy and enthalpy balances to flow processes (Understand)

CO3: Implement the chemical reaction equilibria in engineering systems (Apply)

CO4: Discuss about phase equilibria in engineering aspects (Understand)

CO5: Understand the principles of refrigeration (Understand)

CO-PO MAPPING:

Correlation	ı level	s:	1: Slig	ght (Lo	w)	2: M	oderat	e (Me	dium)		3: Sub	stantia	al (High)
CO5	3	3	-	-	2	-	-		-	1	-	-	1	3
CO4	3	2	-	-	2	-	-	-	-	1	-	-	1	2
CO3	3	2	-	-	2	-	-	-	-	1	-	-	1	2
CO2	3	2	-	-	2	-	-	-	-	1	-	-	1	2
CO1	3	2	-	-	2	-	-	-	-	1	-	-	1	2
POs COs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO

Dr. S. Balasubramanian, M.Tech., Ph.D. Professor & Head Department of Chemical Engineering KPR Institute of Engineering & Technology Arasur, Coimbatore - 641 407

C

SYLLABUS:

PROPERTIES OF SOLUTIONS UNIT I

Partial molar properties - Ideal and non-ideal solutions - Standard states definition and choice - Gibbs - Duhem equation.

UNIT II PHASE EQUILIBRIA

Criteria for equilibrium between phases in multi component non-reacting systems in terms of chemical potential and fugacity - Application of phase rule - Vapour-liquid equilibrium - Liquid-liquid equilibrium - Ternary liquid-liquid equilibrium

CORRELATION AND PREDICTION OF PHASE EQUILIBRIA UNIT III 9 + 3

Thermodynamic consistency of phase equilibria -- Application of the correlation and prediction of phase equilibria in systems of engineering interest particularly to distillation and liquid extraction processes

UNIT IV CHEMICAL REACTION EQUILIBRIA

Definition of standard state - Standard free energy change and reaction equilibrium constant calculation of equilibrium compositions for homogeneous chemical reactors - Thermodynamic analysis of simultaneous reactions

UNIT V REFRIGERATION

Principles of refrigeration - Methods of producing refrigeration - Evaluation of the performance of vapor compression and gas refrigeration cycles.

Contact Periods:

Lecture:	45 Periods	Tutorial:	15 Periods	Practical: - Periods	Project:	- Periods
					Total:	60 Periods

TEXT BOOKS:

- 1. Smith J.M., Van Ness, H.C., Abbot M.C, "Introduction to Chemical Engineering Thermodynamics", 7th Edition, McGraw Hill, 2004.
- 2. Narayanan K.V "A Text Book of Chemical Engineering Thermodynamics" 1st Edition, Prentice Hall of India Pvt. Ltd. 2001.

REFERENCES:

- 1. Hougen, O.A., Watson, K.M., and Ragatz, R.A., "Chemical Process Principles Part II", Thermodynamics, 1st Edition, John Wiley, 1970.
- 2. Dodge, B.F., "Chemical Engineering Thermodynamics", 1st Edition, McGraw-Hill, 1960.
- 3. Sandler, S.I., "Chemical and Engineering Thermodynamics", 2nd Edition, Wiley, 1989.

Dr. S. Balasubramanian, M.Tech., Ph.D. Professor & Head Department of Chemical Engineering KPR Institute of Engineering & Technology Arasur, Coimbatore - 641 407

9 + 3

9 + 3

9 + 3

9 + 3

EVALUATION PATTERN:

	Contin	uous Internal Ass	essments				
Assessment I (100 Marks)		Assessmer (100 Mark		Assessment I	End Semester		
*Individual Assignment / Case Study / Seminar / Project / MCQ	*Individual Assignment /		Written Test	(100 Marks) *Individual Assignment / Case Study / Seminar / Project / MCQ	Examinations Assessment (100 Marks) Written Test		
40	60	40	60	200	100		
	То	tal		40	60		
	10			100			

*Role Play / Group Discussions / Debates / Oral Presentations / Poster Presentations / Technical presentations can also be provided. Course Coordinator can choose any one / two components based on the nature of the course.

SEMESTER V

	SEMESTERV	137	0156		8	
		Coin	Cate	gory	: PCC	>
U21CH502	MASS TRANSFER II	L	τ	P	J	С
		2	1	0	2	4

PRE-REQUISITES:

U21CH403 - Mass Transfer I

COURSE OBJECTIVES:

- To impart the basic concept of conventional mass transfer operations
- To learn the equilibrium characteristics of two-phase mass transfer processes
- · To understand the hydrodynamics and modes of operations in mass transfer equipment

COURSE OUTCOMES:

Upon completion of the course, the student will be able to

- **CO1:** Understand concept and determine the theoretical stages, number of transfer units and height requirements for a gas absorption process (Understand)
- **CO2:** Identify the suitable distillation techniques, determine the number of trays for stage wise contact and determine the height of the packed tower (Apply)
- **CO3:** Apply the ternary equilibrium diagram concepts to determine the number of stages required for separation of liquid-liquid extraction process (Apply)
- **CO4**: Describe core principles of leaching, setting up mass balances, use graphical methods to estimate the number of ideal stages in leaching operation (Analyze)
- **CO5:** Understand the concept of adsorption techniques, various isotherms and ion exchange process (Understand)

POs P08 P09 P010 P011 P012 PS01 PS02 PO1 PO2 PO3 PO4 PO5 PO6 PO7 COs 2 1 2 1 1 1 1 CO1 3 --1 1 2 1 1 1 -1 -CO2 3 ----2 1 1 1 1 1 Ξ. CO3 3 1 --_ --2 1 1 1 1 1 CO4 1 _ _ 3 -2 1 1 1 1 3 1 1 -CO5 -3: Substantial (High) 2: Moderate (Medium) Correlation levels: 1: Slight (Low)

CO-PO MAPPING:

Dr. S. Balasubramanian, M.Tech., Ph.D. Professor & Head Department of Chemical Engineering KPR Institute of Engineering & Technology Arasur, Coimbatore - 641 407

nginee

Cent

R Inst

Q,

9

9

9

9

SYLLABUS:

UNIT I ABSORPTION

Equilibrium and operating line concept in absorption calculations; Types of contactors – Design of packed and plate type absorbers; Operating characteristics of stage wise and differential contactors – Concepts of NTU – HTU and overall volumetric mass transfer coefficients – Multicomponent absorption – Mechanism and model of absorption with chemical reaction – Thermal effects in absorption process.

UNIT II DISTILLATION

Design of Distillation – Stage-wise and continuous Differential contact operations – Design calculations using Ponchon-Savarit and Mc-Cabe Thiele Methods – Separation efficiency – MurphreePlate Efficiency – Point and overall efficiency interrelations – Reboilers and condensers – Open steam Distillation – Design of Packed bed distillation towers – HTU and NTU calculations

UNIT III LIQUID-LIQUID EXTRACTION

Extraction- Theory – LLE for different systems – Effect of Pressure and Temperature on LLE – Solubility criteria – Design of Batch and continuous extraction towers for miscible and immiscible systems – Industrial Applications

UNIT IV LEACHING

Leaching – Theory – Mechanism – Types of leaching – Solid – Liquid equilibria – Design of Batch and continuous extractors – Equipment and industrial applications.

UNIT V ADSORPTION-ION EXCHANGE AND MEMBRANE SEPARATION PROCESSES

Adsorption – Types of adsorption – Nature of adsorbents-Adsorption hysteresis – Adsorption isotherms – Operation of adsorption columns – Design of Batch and continuous adsorbers – Principle of Ion exchange – Techniques and applications – Solid and liquid membranes – Concept of osmosis – Reverse osmosis – Electro dialysis – Ultrafiltration.

Contact Periods:

Lecture: 30 Periods Tutorial: 15 Periods Practical: - Periods Project: 30 Periods Total: 75 Periods

TEXT BOOKS:

- 1. R.E. Treybal, "Mass Transfer Operations", 3rd Edition, McGraw Hill Book Co., New York, 1981.
- N. Anantharaman and K.M.Meera Sheriffa Begum, "Mass Transfer Theory and Practice", 4th Edition, Prentice Hall of India Pvt. Ltd., New Delhi, 2013.

REFERENCES:

- 1. M. Coulson and J.F. Richardson, "Chemical Engineering", Vol II, 5th Edition, Pergamon Press, New York, 2002.
- 2. C.J. Geankopolis, "Transport Processes in Chemical Operations", 4th Edition, Prentice Hall of India, 2004.
- 3. W.L. Mccabe, J.C. Smith and P. Harriot, "Unit Operations in Chemical Engg.", 7th Edition, McGraw Hill Book Co., New York, 2004.

EVALUATION PATTERN:

Continu	Continuous Internal Assessments Assessment II									
Assessment I (Theo (100 Marks)	Theory Examinations									
*Individual Assignment / Case Study / Seminar / Mini Project / MCQ	Written Test	Review I	Review II	Review III	(Examinations will be conducted for 100 Marks)					
40	60	15	25	60						
25			25	50						
50					50					
		Total: 1	00							

*Role Play / Group Discussions / Debates / Oral Presentations / Poster Presentations / Technical presentations can also be provided. Course Coordinator can choose any one / two components based on the nature of the course.

ala

ngineeri SR Institute B.TECH. - CH - R2021 - CBCS Centre for Academic SEMESTER V Courses Category: PCC ÷ Din T Ρ Ł L MASS TRANSFER LABORATORY U21CH503 Ô 0 4 0

PRE-REQUISITES:

- U21CH403 Mass Transfer I
- U21CH502 Mass Transfer II

COURSE OBJECTIVES:

- To impart the practical experience for the students to apply the concepts of mass transfer principles
- To develop sound practical knowledge for students on different types of mass transfer equipments
- To estimate the mass transfer parameters

COURSE OUTCOMES:

Upon completion of the course, the student will be able to

- **CO1:** Determine the diffusivity practically and compare the results with the empirical correlations (Understand)
- CO2: Estimate the mass transfer rate and mass transfer co-efficient (Understand)

CO3: Evaluate the performance/calculate the parameters in different distillation processes (Apply)

CO4: Evaluate the performance/calculate the parameters in leaching and extraction operations (Apply)

CO5: Estimate the drying characteristics (Understand)

Correlation	n level:	S:	1: Sli	ght (Lo	w)	2: M	oderat	e (Med	dium)		3: Sub	stantia	al (High	1)
CO5	3	3	-	2	-	-	-	-	2	-	-	1	1	-
CO4	3	3	-	2	-	-	-	-	2	-	-	1	1	-
CO3	3	3	*	2	-	-	-	-	2	-	-	1	1	-
CO2	3	3	-	2	-	-	-	-	2	-	-	1	1	-
CO1	3	3	-	2	-	-	-	-	2	-	•	1	1	-
POs COs	P01	PO2	PO3	PO4	PO5	P06	P07	PO8	PO9	PO10	P011	PO12	PSO1	PSO

CO-PO MAPPING:

LIST OF EXPERIMENTS

- 1. Separation of binary mixture using Simple distillation Heat transfer in a shell and tube heat exchanger
- 2. Separation of binary mixture using Steam distillation

Dr. S. Balasubramanian, M.Tech., Ph.D. Professor & Head Department of Chemical Engineering KPR Institute of Engineering & Technology Arasur, Coimbatore - 641 407

С

B.TECH. - CH - R2021 - CBCS

- 3. Separation of binary mixture using Packed column distillation
- 4. Measurement of diffusivity
- 5. Liquid-Ilquid extraction
- 6. Drying characteristics of forced draft dryer
- 7. Adsorption studies
- 8. Cross current leaching studies
- 9. Solid Liquid mass transfer studies
- 10. Water purification using ion exchange columns
- 11. Estimation of mass/heat transfer coefficient for cooling tower
- 12. Demonstration of Gas Liquid absorption

Contact Periods:

Lecture:	Periods	Tutorial: Periods	Practical: 60 Periods	Project:	- Periods
				Total:	60 Periods

TEXT BOOKS:

- 1. R.E. Treybal, "Mass Transfer Operations", 3rd Edition, McGraw Hill Book Co., New York, 1981.
- 2. N. Anantharaman and K.M.Meera Sheriffa Begum, "Mass Transfer Theory and Practice", 2nd Edition, Printice Hall of India Pvt. Ltd., New Delhi, 2013.

REFERENCES:

- 1. M. Coulson and J.F. Richardson, "Chemical Engineering", Vol II, 5th Edition, Pergamon Press, New York, 2002
- 2. C.J. Geankopolis, "Transport Processes In Chemical Operations", 4th Edition, Prentice Hall of India, New Delhi, 2004.
- 3. W.L. Mccabe, J.C. Smith and P. Harriot, "Unit Operations in Chemical Engg.", 7th Edition, McGraw Hill Book Co., New York, 2004

EVALUATION PATTERN:

Continuous Internal Assessm	nents	
Evaluation of Laboratory Observation, Record (Rubrics Based Assessments)	Test	End Semester Examinations
75	25	
100		100
60		40
	100	1

Dr. S. Balasubramanian, M.Tech., Ph.D. **Professor & Head** Department of Chemical Engineering KPR Institute of Engineering & Technology Arasur, Coimbatore - 641 407

SEMESTER V

	SENESTER V	E Cours	ses	100		
		* Coimbo	Cate	gory:	PCC	2
U21CH504	HEAT TRANSFER LABORATORY	L	Ť	Р	J	C
		0	0	4	0	2

PRE-REQUISITES:

U21CH404 – Process Heat Transfer

COURSE OBJECTIVES:

- Gain hands on experience on operation of different heat transfer equipment
- Determine rate or coefficients that characterize performance of heat transfer equipment
- Analyze the key performance indicators of various heat transfer equipment

COURSE OUTCOMES:

Upon completion of the course, the student will be able to

CO1: Estimate rate of heat transfer in various heat exchanger equipment (Apply)

CO2: Estimate thermal conductivity of plate, fins and powder material (Apply)

CO3: Estimate the performance of different evaporator configurations (Apply)

CO4: Determine the heat transfer through different condenser arrangements (Apply)

CO5: Understand the working principles of multiple heat transfer equipment (Understand)

CO-PO MAPPING:

POs	P01	PO2	PO3	PO4	PO5	PO6	P07	PO8	P09	PO10	P011	PO12	PSO1	PSO
COs														
CO1	3	2	-	3	-	-	-	-	3	1	-	1	3	-
CO2	3	2	-	3	-	-	-	-	3	1	-	1	3	-
CO3	3	2	-	3	-	-	-	-	3	1	-	1	3	•
CO4	3	2	-	3	-	-	-	*	3	1	-	1	3	-
CO5	3	2	-	3	-	-		-	3	1	-	1	3	-
Correlation	ı level:	5:	1: Sli	ght (Lo	w)	2: M	oderat	e (Me	dium)		3: Sub	ostantia	al (High)

Dr. S. Balasubramanian, M.Tech., Ph.D. **Professor & Head** Department of Chemical Engineering KPR Institute of Engineering & Technology Arasur, Coimbatore - 641 407

ginea

Centre for Academic

B.TECH. - CH - R2021 - CBCS

LIST OF EXPERIMENTS

- 1. Heat transfer in a double pipe heat exchanger
- 2. Heat transfer in a shell and tube heat exchanger
- 3. Heat transfer through a helical coil setup
- 4. Estimating thermal conductivity of a hot plate
- 5. Estimating heat transfer rate through a fin
- 6. Estimating heat transfer through a spher
- 7. Heat transfer through an insulating powder placed inside a sphere
- 8. Heat transfer in an open pan evaporator
- 9. Experiment on a single effect evaporator
- 10. Experiment on heat transfer in a horizontal condenser
- 11. Experiment on heat transfer in a vertical condenser
- 12. Heat transfer in a jacketed vessel

Contact Periods:

Lecture:	Periods	Tutorial: Periods	Practical: 60 Periods	Project:	– Periods
				Total:	60 Periods

REFERENCES:

- 1. Donald Kern, "Process heat transfer", 8th Edition, McGraw Hill, 2017.
- 2. J P Hollman and Souvik Bhattacharyya, "Heat transfer", 10th Edition, McGraw Hill, 2017,

EVALUATION PATTERN:

Continuous Internal Assess	ments	
Evaluation of Laboratory Observation, Record (Rubrics Based Assessments)	Test	End Semester Examinations
75	25	
100		100
60		40
	100	

Institute

SEMESTER V

		Coimbalotee	ateg	ory:	HSM	С
U21SSG02	SOFTSKILLS - II	L	Т	Ρ	J	С
		0	0	2	0	1

PRE--REQUISITES:

Nil

COURSE OBJECTIVES:

- Understand the importance of communication and enhance self confidence
- Acquire employability skills

COURSE OUTCOMES

Upon completion of the course, the student will be able to

CO1: Actively participate in Group Discussion (Analyze)

CO2: Enhance interview skills and make effective Presentation (Apply)

CO-PO MAPPING:

POs COs	P01	PO2	PO3	PO4	PO5	P06	PO7	PO8	PO9	PO10	PO11	P012	PSO1	PSO2
CO1	-	-	-	-	-	-	-	-	2	-3	-	-	-	-
CO2	-	-	*	-	-	-	-	-	2	3	-	-	-	-
Correlation	n level:	s:	1: Sli	ght (Lo	w)	2: M	oderat	e (Me	dium)		3: Sub	stantia	al (High)

SYLLABUS:

UNIT I PRESENTATION SKILLS

Presentation Techniques- Time Management Techniques- Body language – Managerial Skills-Making Effective Presentation

UNIT II GROUP DISCUSSION

Introduction to Group Discussion- Understanding Group Dynamics- Brain Storming the Topics- Group Discussion Strategies- Activities to Improve GD Skills

UNIT III INTERVIEW SKILLS

Preparation for the Interview- Interview Techniques and Etiquettes - Mock Interview

Dr. S. Balasubramanian, M.Tech., Ph.D. Professor & Head Department of Chemical Engineering KPR Institute of Engineering & Technology Arasur, Coimbatore - 641 407

10

10

Contact Periods:

Lecture:	- Periods	Tutorial: - Periods	Practical: 30 Periods	Project: - Periods
				Total: 30 Periods

TEXT BOOKS:

- 1. Sharma, Prashant. "Soft Skills: Personality Development for Life Success." 1st Edition, BPB Publications, 2022.
- 2. "Leader Interpersonal and Influence Skills: The Soft Skills of Leadership." 2nd Edition, Routledge Publications, 2014.

REFERENCES:

- 1. Ghosh, B.N. "Managing Soft Skills for Personality Development." 1st Edition, Tata McGraw-Hill, 2012.
- Bhatnagar, Nitin and MamtaBhatnagar. "Effective Communication and Soft Skills Strategies for Success" 3rd Edition, Pearson Education, 2012.

EVALUATION PATTERN:

Continuous Internal Assessments	Marks
Test - I	50
Test - Il	50
Total	100

PRE-REQUISITES:

Nil

COURSE OBJECTIVES:

- To gain knowledge on different types of chemical reactors, the development of design equation of chemical reactors under isothermal and non-isothermal conditions
- To develop rate laws for heterogeneous reactions
- Enabled to distinguish between various RTD curves and predict the conversion from a nonideal reactor using tracer information

COURSE OUTCOMES:

Upon completion of the course, the student will be able to

CO1: Build the knowledge in developing rate laws for first, second, third order of reaction and to analyze about the comparison of elementary and non-elementary reactions (Apply)

CO2: Apply the Knowledge of basic design equation to CSTR and PFR in series and parallel (Apply)

CO3: Design of reactors in multiple reaction under parallel and series conditions (Apply)

CO4: Apply the Knowledge of thermodynamic effects in selection and design of reactors (Apply)

CO5: Apply the principles of RTD factor in reactor and for non-ideal flow systems (Apply)

POs COs	PO1	PO2	P03	PO4	PO5	PO6	P07	PO8	P09	PO10	P O1 1	PO12	PSO1	PSO2
CO1	2	1	1	1	-	-	-	-	-	-	-	-	2	2
CO2	2	2	1	1	-	-	-	-	-	-	-	-	2	2
CO3	2	3	2	1	-	-	-	-	+	•	-	-	2	2
CO4	2	2	1	1	-	-	-	-	-	-	-	-	2	2
CO5	2	2	1	1	-	-	-	-	-	-	-	-	2	2
Correlation	ı level:	s:	1: Sli	ght (Lo	ow)	2: M	oderat	e (Me	dium)		3: Sub	stantia	ıl (High)

CO-PO MAPPING:

SYLLABUS:

UNIT I INTRODUCTION TO CHEMICAL REACTION ENGINEERING 9+3 Rate equation – Elementary – Non-elementary reactions – Theories of reaction rate and Prediction; Design equation for constant and variable volume batch reactors – Analysis of experimental kinetics data – Integral and differential analysis

UNIT II IDEAL REACTORS

Design of continuous reactors – Stirred tank and tubular flow reactor – Recycle reactors – Equal sized CSTRs in series and parallel – Equal sized PFRs in series and parallel – Size comparison of reactors

UNIT III MULTIPLE REACTIONS

Design of reactors for multiple reactions – Consecutive – Parallel and mixed reactions – Factors affecting choice – Optimum yield and conversion – Selectivity – Reactivity and yield.

UNIT IV NON-ISOTHERMAL REACTORS

Non-isothermal homogeneous reactor systems – Adiabatic reactors – Rates of heat exchanges for different reactors – Design for constant rate input and constant heat transfer coefficient – Operation of batch and continuous reactors – Optimum temperature progression.

UNIT V IDEAL FLOW AND NON-IDEAL FLOW

The residence time distribution as a factor of performance – Residence time functions and relationship between them in reactor – Basic models for non-ideal flow – Conversion in non-ideal reactors

Contact Periods:

Lecture:	45 Periods	Tutorial:	15 Periods	Practical: - Perlods	Project:	- Periods
					Total:	60 Periods

TEXT BOOKS:

- 1. Levenspiel O, "Chemical Reaction Engineering", 3rd Edition, Wiley Eastern Ltd., 2006.
- Fogler.H.S., "Elements of Chemical Reaction Engineering", 4th Edition, Prentice Hall of India Ltd., 2015.

REFERENCES:

- 1. Smith, J.M, "Chemical Engineering Kinetics", 3rd Edition, McGraw Hill, 1981.
- Froment, G.F. & K.B.Bischoff, "Chemical Reactor Analysis and Design", 1st Edition, John Wiley and Sons, 1979.

Dr. S. Balasubramanian, M.Tech., Ph.D. Professor & Head Department of Chemical Engineering KPR Institute of Engineering & Technology Arasur, Coimbatore - 641 407

9+3

9+3

9+3

9+3

EVALUATION PATTERN:

Assessme (100 Mark		Assessme (100 Mar		Total internal	End Semeste
*Individual Assignment / Case Study / Seminar / Project / MCQ	Written Test	*Individual Assignment / Case Study / Seminar / Project / MCQ	Written Test	Total Internal Assessments 200 40	Examination
40	60	40	60	200	100
	То	tal		40	60

*Role Play / Group Discussions / Debates / Oral Presentations / Poster Presentations / Technical presentations can also be provided. Course Coordinator can choose any one / two components based on the nature of the course.

B.TECH CH R2	021 – CBCS		gineer	13	KP	RIE	•
	SEMESTER VI	E Aca	ntre f Idem Urse:	ic]	echnor	n Beyond	
		*Coin	bater	Cate		PCC	
U21CH602	CHEMICAL PROCESS INDUSTRIES		L 3	0	Р 0	0	С 3

PRE-REQUISITES:

Nil

COURSE OBJECTIVES:

- To introduce the fundamental concepts and principles of chemical production process including unit operation and unit process with their symbols in chemical process industries (Inorganic and Organic) and the role of chemical engineers in the industry.
- To impart knowledge on the process flow diagrams that are used to communicate the production processes in chemical process industries.
- To understand the importance of chemical process industries, and their significance in modern society.

COURSE OUTCOMES:

Upon completion of the course, the student will be able to

- **CO1:** Recognize general anatomy of chemical production, the role of chemical engineers, interpret process flow diagrams used to communicate production processes involved in chemical process industries and demonstrate an understanding of the manufacturing processes of sulfur, sulfuric acid, and cement industries. (Understand)
- **CO2:** Explain the basic process and steps involved in the industrial production of fertilizers (NPK) (Understand)
- **CO3:** Illustrate the process of manufacture of pulp, paper, sugar and starch with the help of a process flow diagram (Understand)
- **CO4:** Describe the petroleum refining process and the production of petrochemicals with the help of a process flow diagram (Remember)
- **CO5:** Explain the various process steps and sequence of operations involved in the industrial production of fuels and industrial gases (Understand)

CO-PO MAPPING:

POs COs	P01	P02	PO3	P04	PO5	P06	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	
CO1	1	2	•	-	-	-	-	-	2	1	-	-	3	1	
CO2	1	2	2	-	-	-	1	-	2	1	-	2	3	1	
CO3	1	2	-	-	-	-	-	-	2	1	-	-	3	1	Kth
CO4	1	2	-	-	-	-	-	-	2	Dr! S	. Bala	isubra	a <mark>man</mark> i	an, ¹ M	Tech., F
CO5	1	2	-	-	-	-	-	-	2	1 De	partm	Profe	SSGr &	k Head	l Igineerii
Correlation	levels	s:	1: Slip	ght (Lo	w)	2: M	oderat	e (Me	dium)	KPR	3: Sub	stantia	H(High	ering	Techno

SYLLABUS:

UNIT I SULFUR, SULFURIC ACID AND CEMENT

Sulfur – Raw materials Sources – Mining and production of Sulfur – Sulfuric acid – Methods of production of Sulfuric acid – Contact process – Chamber process. Cement – Properties of Cement – Methods of production – Overall factors for Cement industry.

UNIT II FERTILIZER INDUSTRY

Major Components of Fertilizer industries – Nitrogen industries – Ammonia – Nitric acid – Urea – Phosphorus industries - Phosphorus – Phosphoric acid – Super Phosphate – Potassium chloride – Potassium Sulphate.

UNIT III PULP, PAPER, SUGAR, AND STARCH INDUSTRIES

Pulp – Methods of production – Comparison of pulping processes. Paper – Types of paper products –Raw materials – Methods of production. Sugar – Methods of production – By products of the Sugar industry – Starch – Methods of production – Starch derivations.

UNIT IV PETROLEUM AND PETRO CHEMICAL INDUSTRIES

Petroleum – Chemical Composition – Classification of crude petroleum – Petroleum Refinery products – Petroleum Conversion processes – Pyrolysis and Cracking – Reforming Polymerization – isomerization and Alkylation – Petrochemicals – Methanol – Chloro methanol – Acetylene and ethylene –Isopropanol – Acrylonitrile – Butadiane – Chemicals from Aromatics – Benzene – Toluene and Xylene.

UNIT V FUEL AND INDUSTRIAL GASES

Fuel Gases – Producer gas – Water gas – Coke oven gas – Natural gas – Liquefied natural gas – Industrial gases – Carbon dioxide – Hydrogen – Nitrogen and oxygen

Contact Periods:

Lecture:	45 Periods	Tutorial: – Periods	Practical: - Periods	Project:	- Periods

Total: 45 Periods

TEXT BOOKS:

- 1. Dryden, C.E, Outlines of Chemical technology, 2nd Edition, Affiliate East West press, 2003.
- 2. Moulin, J.A., M. Makkee, and Diepen, A.V., Chemical Process Technology, 1st Edition, Wiley, 2001.

REFERENCES:

- 1. Austin, G.T., Shreve's , Chemical Process Industries, 5th Edition McGraw-Hill, 1998.
- 2. SrikumarKoyikkal, Chemical Process Technology and Simulation, 2nd Edition, PHI Learning Ltd, 2001
- 3. McCabe W.L, Smith, J C and Harriot. P "Unit operations in Chemical Engineering", 77 Editionech., Ph.D. McGraw Hill, 2005. Professor & Head

Department of Chemical Engineering KPR Institute of Engineering & Technology Arasur, Coimbatore - 641 407

9

9

9

9

EVALUATION PATTERN:

	Contin	uous Internal As	sessments		
Assessme (100 Mari		Assessme (100 Mar		Total Internal	End Semester
*Individual Assignment / Case Study / Seminar / Project / MCQ	Written Test	*Individual Assignment / Case Study / Seminar / Project / MCQ	Written Test	Assessments	Examinations
40	60	40	60	200	100
	То	tal		40 10	60 0

*Role Play / Group Discussions / Debates / Oral Presentations / Poster Presentations / Technical presentations can also be provided. Course Coordinator can choose any one / two components based on the nature of the course.

Mh

B.TECH. - CH - R2021 - CBCS

SEMESTER VI

	* Colmb	atore	Cate	gory:	PCC	2
U21CH603	PROCESS INSTRUMENTATION, DYNAMICS AND	L	т	Р	J	С
	CONTROL	3	0	0	0	3

PRE-REQUISITES:

Nil

COURSE OBJECTIVES:

- To introduce the concept of Laplace transforms for solving differential equations
- To develop dynamic modeling of physical processes
- To analyze control system stability

COURSE OUTCOMES

Upon completion of the course, the student will be able to

CO1: Understand the concept of Laplace transform (Understand)

CO2: Apply the first principles method to develop the transfer function of the process (Apply)

CO3: Develop block diagram and analyze transient response of control schemes (Apply)

CO4: Analyze stability of control systems and perform tuning of controllers (Analyze)

CO5: Understand the applications of advanced control system in process industries (Understand)

CO-PO MAPPING:

POs COs	P01	PO2	PO3	PO4	PO5	P06	P07	PO8	PO9	PO10	P011	PO12	PSO1	PSO2
CO1	3	3	2		1	-	-	-	-	-	-	-	3	2
CO2	3	3	2	-	1	-	-	-	-	-	-	-	3	2
CO3	3	3	2	-	1	-	-	-	-	-	-	-	3	2
CO4	3	3	2	-	1	-	-	-	-	•	-	-	3	2
CO5	3	3	2	-	1	-	-	-	-	-	-	-	3	2
Correlation	n levels	s:	1: Sli	ght (Lo	w)	2: M	oderat	e (Me	dium)	10 - 10 	3: Sub	stantial	(High)	

SYLLABUS:

UNIT I INSTRUMENTATION

Principles of measurements and classification of process instruments – Measurement of temperature – Pressure – Fluid flow – Liquid weight and weight flow rate – Viscosity – pH – Concentration – Electrical and thermal conductivity – Humidity of gases

Dr. S. Balasubramanian, M.Tech., Ph.D. Professor & Head Department of Chemical Engineering KPR Institute of Engineering & Technology Arasur, Coimbatore - 641 407

UNIT II OPEN LOOP SYSTEMS

Laplace transformation and its application in process control – First order systems and their transient response for standard input functions – First order systems in series – Linearization and its application inprocess control – Second order systems and their dynamics; transportation lag

UNIT III CLOSED LOOP SYSTEMS

Closed loop control systems – Development of block diagram for feed-back control systems – Servoand regulatory problems – Transfer function for controllers and final control element – Transient response of closed – loop control systems and their stability

UNIT IV FREQUENCY RESPONSE

Introduction to frequency response of closed-loop systems – Control system design by frequency response techniques – Bode diagram – Stability criterion – Tuning of controllers Z-N tuning rules – C-Ctuning rules

UNIT V ADVANCED CONTROL SYSTEMS

Introduction to advanced control systems – Cascade control – Feed-forward control – Ratio control; control – Control of chemical processes

Contact Periods:

Lecture:	45 Periods	Tutorial: Periods	Practical:	- Periods	Project: - Periods
					Total: 45 Periods

TEXT BOOKS:

- 1. Coughnowr, D., "Process Systems Analysis and Control ", 3rd Edition, McGraw Hill, New York, 2008.
- 2. Stephanopoulos, G., "Chemical Process Control ", 1st Edition, Prentice Hall of India, 2003.
- 3. Sudhakar A and Shyammohan S Palli, "Circuits and Network Analysis", 5th Edition, McGraw-Hill Education, New Delhi, 2019.

REFERENCES:

- 1. Dale E. Seborg, Thomas F. Edgar, Duncan A. Mellichamp , "Process dynamics and control I", 2nd Edition, John Wiley & ampsons, Inc.
- 2. Marlin, T. E., "Process Control ", 2nd Edition, McGraw Hill, New York, 2000.

Dr. S. Balasubramanian, M.Tech., Ph.D. Professor & Head Department of Chemical Engineering KPR Institute of Engineering & Technology Arasur, Coimbatore - 641 407

9

9

9

EVALUATION PATTERN:

	Contin	uous Internal As	sessments		
Assessmer (100 Mark		Assessme (100 Mark			End Semester
*Individual Assignment / Case Study / Seminar / Project / MCQ	Written Test	*Individual Assignment / Case Study / Seminar / Project / MCQ	Written Test	Assessments	Examinations
40	60	40	60	200	100
				40	60
	То	tal		10	0

*Role Play / Group Discussions / Debates / Oral Presentations / Poster Presentations / Technical presentations can also be provided. Course Coordinator can choose any one / two components based on the nature of the course.

SEMESTER VI

	imba	batore Category: PCC							
U21CH604	CHEMICAL REACTION ENGINEERING LABORATORY	L T P 0 0 2	J	J C					
	· ·	0	0	2	0	1			

PRE-REQUISITES:

U21CH601 – Chemical Reaction Engineering I

COURSE OBJECTIVES:

- To analyse and performing the experiments and estimation of reaction kinetics
- To find out the residence time distribution in various reactor system
- To understand various types reactor used in industries

COURSE OUTCOMES:

Upon completion of the course, the student will be able to

CO1: Determine the rate constant experimentally in a batch reactor (Apply)

- **CO2:** Apply and determine the conversion of a reaction in various combination of reactors (Batch, CSTR, PFR) (Apply)
- CO3: Study of temperature dependence of rate constant (understand)
- CO4: Determine the non-ideal behavior and residence time distribution in PFR and CSTR (Apply)

CO5: Determine the conversion of packed bed reactor (Apply)

CO-PO MAPPING:

Correlation	levels	5:	1: Slig	ght (Lo	w) 2: Moderate (Medium) 3: Substantial (High))				
CO5	3	2	2	2	-	-	-	-	-	-	-	-	2	2
CO4	3	2	2	2	-	-	-	-	-	-	-	-	2	1
CO3	3	2	2	2	-		-	-	-	-	-	•	2	2
CO2	3	2	2	2	-		-	-	-	-	-	-	2	2
CO1	3	2	2	2	-	-	-	-	-	-	-	-	2	1
POs COs	P01	P02	PO3	PO4	P05	PO6	P07	PO8	PO9	PO10	P011	P012	PSO1	PSO

LIST OF EXPERIMENTS

Lab Cycle 1

- 1. Kinetic studies in isothermal batch reactor
- 2. Kinetic studies in single CSTR
- 3. Kinetic studies in series of CSTR
- 4. Kinetic studies in PFR
- 5. Kinetic studies in PFR followed by CSTR

Lab Cycle 2

- 1. RTD in a CSTR
- 2. Kinetic studies in a packed bed reactor
- 3. RTD in a packed bed.
- 4. RTD In a PFR
- 5. Temperature dependency of reaction rate

Contact Periods:

Lecture: - Periods	Tutorial: - Periods	Practical: 30 Periods	Project: – Periods
			Total: 30 Periods

TEXT BOOKS:

- 1. Levenspiel O, "Chemical Reaction Engineering", 3rd Edition, Wiley Eastern Ltd., 2006.
- 2. Smith, J.M, "Chemical Engineering Kinetics", 3rd Edition, McGraw Hill, 1981.

REFERENCES:

- 1. Fogler. H. S., "Elements of Chemical Reaction Engineering", 4th Edition, Prentice Hall of India Ltd., 2015.
- 2. Froment. G.F. & K. B. Bischoff, "Chemical Reactor Analysis and Design", 1st Edition, John Wiley and Sons, 1979

EVALUATION PATTERN:

Continuous Internal Assessm	ents	
Evaluation of Laboratory Observation, Record (Rubrics Based Assessments)	Test	End Semester Examinations
75	25	
100		100
60		40
	100	

B.TECH. - CH - R2021 - CBCS

	SEMESTER VI	Hady * Cou	demi rses	C Join	HELEYONG	
U2155G03	SOFTSKILLS - III	in oa	ateg T	P	HSM J	C C
		0	0	2	0	1

PRE-REQUISITES:

Nil

COURSE OBJECTIVES:

- Improve language adeptness and to enhance fluency in language
- Gain emotional intelligence and to manage stress

COURSE OUTCOMES:

Upon completion of the course, the student will be able to

CO1: Write reports and make reasoning and assertions (Analyze)

CO2: Overcome stress and attain work-life balance (Apply)

CO-PO MAPPING:

POs COs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	-	-	-	-	-	-	•	-	1	3	-	-	-	-
CO2	-	-	-	-	-	-	-	1	-	3	-	2	-	-
Correlation	levels	s:	1: Sli	ght (Lo	w)	2: M	oderat	e (Me	dium)		3: Sub	stantia	ıl (High)

SYLLABUS:

UNIT I LANGUAGE ADEPTNESS

Sentence Completion - Report Writing - Logical Reasoning - Cause and Effect - Assertion and Reasoning

UNIT II STRESS MANAGEMENT

Factors Causing Stress – Positive and Negative Stress – Effects of Stress – Stress Overcoming Techniques – Context Based Assessments

UNIT III EMOTIONAL INTELLIGENCE

Leadership effectiveness - Self-awareness - Self-management- Self-motivation - Empathy and Social Skills

Dr. S. Balasubramanian, M.Tech., Ph.D. Professor & Head Department of Chemical Engineering KPR Institute of Engineering & Technology Arasur, Coimbatore - 641 407

Enginee

10

10

Contact Periods:

Lecture: - Periods Tutorial: - Periods Practical: 30 Periods Project: - Periods

Total: 30 Periods

TEXT BOOKS:

- 1. Goleman, Daniel "Emotional Intelligence: Why it Can Matter More Than IQ." Bloomsbury, 2009.
- 2. Barker, Alan. "Improve Your Communication Skills: Present with Confidence; Write with Style; Learn Skills of Persuasion." Kogan Page, 2010.

REFERENCES:

- 1. Stranks, Jeremy." Stress at Work: Management and Prevention." Butterworth-Heinemann, 2005.
- 2. Watson, Edward J. "Emotional Intelligence: A Practical Guide on How to Control Your Emotions and Achieve Lifelong Social Success." Amazon Digital Services LLC, 2016.

EVALUATION PATTERN:

Continuous Internal Assessments	Marks
Test - I	50
Test - II	50
Total	100

PRE-REQUISITES:

U21CH601 - Chemical Reaction Engineering I

COURSE OBJECTIVES:

- To gain the knowledge in finding the rate of adsorption and rate controlling parameters of heterogeneous reaction
- To understand the mechanism of gas-solid catalytic reaction
- To understand the basics of non-catalytic reactors and gas-liquid reactors

COURSE OUTCOMES:

Upon completion of the course, the student will be able to

CO1: Classify various types of catalysts and analyze physical properties of catalyst (Understand)

- **CO2:** Apply the various contacting pattern for two phase system and predict the rate equation for heterogeneous reactions (Apply)
- **CO3:** Apply the best kinetic regimes for mass transfer and reaction for a given reaction and predict the rate equation (Apply)
- CO4: To study the effect of rate controlling steps in Gas-Liquid reactions (Understand)
- **CO5:** To gain knowledge about the various experimental methods involved for rate determination (Understand)

CO-PO MAPPING:

POs COs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	P012	PSO1	PSO2
CO1	2	1		2	-	•	-	-	-	-	2	2	1	1
CO2	2	2	1	2	-	-	-	-	-	-	2	2	2	2
CO3	2	2	2	-	-	-	-	-	-	-	-	-	2	2
CO4	2	2	2	-	-	-	-	-	-	-	-	-	1	1
CO5	2	3	2	-	-	-	-	-	-	-	-	-	2	2
Correlation	n level:	s:	1: Slig	ght (Lo	w)	2: M	oderat	e (Me	dium)		3: Sub	stantia	al (High)

SYLLABUS:

UNIT I CATALYST

Nature of catalyst - Surface area and pore volume distributions - Catalyst preparation.

9

UNIT II HETROGENEOUS REACTORS

Rate equation for Hetrogeneous reactions – Adsorption isotherms – Rate of adsorptions and desorption – Surface reaction analysis of rate equations and enzyme reaction (Michaelis-Menten Equation).

UNIT III GAS-SOLID CATALYTIC REACTORS

Diffusion with catalyst particle – Effective thermal conductivity– Mass and heat transfer within catalyst pellets – Effectiveness factor– Thiele modulus– Fixed bed reactors.

UNIT IV GAS-SOLID NON-CATALYTIC REACTORS

Models for explaining kinetics – Volume and surface models – Controlling resistances and rate controlling steps – Time for complete conversion for single and mixed sizes – Fluidised and static reactors.

UNIT V GAS-LIQUID REACTORS

Absorption combined with chemical reactions; mass transfer coefficients and kinetic constants – Application of film – Penetration and surface renewal theories; Hatta number and enhancement factor for first order reaction; tower reactor design.

Contact Periods:

Lecture:	45 Periods	Tutorial:	- Periods	Practical: - Periods	Project:	- Periods
					Total:	45 Periods

TEXT BOOKS:

- 1. Levenspiel O, "Chemical Reaction Engineering", 3rd Edition, Wiley Eastern Ltd., 2006.
- Fogler.H.S., "Elements of Chemical Reaction Engineering", 4th Edition, Prentice Hall of India Ltd., 2015.

REFERENCES:

- 1. Smith, J.M, "Chemical Engineering Kinetics", 3rd Edition, McGraw Hill, 1981.
- Froment. G.F. & K.B.Bischoff, "Chemical Reactor Analysis and Design", 1st Edition, John Wiley and Sons, 1979.

Na

Dr. S. Balasubramanian, M.Tech., Pn.D. Professor & Head Department of Chemical Engineering KPR Institute of Engineering & Technology Arasur, Coimbatore - 641 407

9

9

9

		sessments	uous Internal As	Contin	
Fud Comoo	-		Assessme (100 Mari		Assessme (100 Mark
End Semes Examinatio	Total Internal Assessments	*Individual ssignment / ase Study / Seminar / oject / MCQ		Written Test	*Individual Assignment / Case Study / Seminar / Project / MCQ
100	200	60	40	60	40
60	40	·	-	·	
00	10		tal	То	

EVALUATION PATTERN:

*Role Play / Group Discussions / Debates / Oral Presentations / Poster Presentations / Technical presentations can also be provided. Course Coordinator can choose any one / two components based on the nature of the course.

SEMESTER VII

		Coimbatot	ateg	ory:	HSM	C
U21CH702	PROCESS ENGINEERING ECONOMICS	L	Т	Р	J	С
		3	0	0	0	3

PRE-REQUISITES:

Nil

COURSE OBJECTIVES:

- To make the students to understand the principles of management
- To provide the concepts of process engineering economics to the students
- To impart the knowledge on production planning and control employed in typical process and allied industries

COURSE OUTCOMES:

Upon completion of the course, the student will be able to

CO1: Define and explain the concept principles of management (Understand)

CO2: Apply the concept of time value of money to compute depletion interest depreciation etc. (Apply)

CO3: Apply the concept of profitability to estimate project profitability (Apply)

CO4: Relate the economic balance concepts in process industries (Apply)

CO5: Build the control charts in production and quality control (Understand)

POs COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	P011	P012	PSO1	PSO2
CO1	3	2	-	-	-	-	-	1	1	1	-	-	2	2
CO2	3	2	2	2	-	-	-	1	1	1	1	1	2	2
CO3	3	2	2	2	-	-	-	1	1	1	1	1	2	2
CO4	3	2	2	2	-	-	-	1	1	1	1	1	2	2
CO5	3	2	2	2	-	1	1	1	1	1	1	1	2	2
Correlation	ı level:	s:	1: Sli	ght (Lo	w)	2: M	oderat	e (Me	dium)		3: Sub	stantia	al (High)

CO-PO MAPPING:

Dr. S. Balasubramanian, M.Tech., Ph.D. Professor & Head Department of Chemical Engineering KPR Institute of Engineering & Technology Arasur, Coimbatore - 641 407

SYLLABUS:

UNIT I PRINCIPLES OF MANAGEMENT

Principles of management -- Planning -- organizing -- Staffing -- Coordinating -- Directing -- Controlling and communicating -- Types of organizations -- Management information systems.

UNIT II INTEREST AND PLANT COST

Time value of money – Equivalence – Depreciation – Depletion – Estimation of capital cost – Capital requirement for complete plant – Cost indices – Capital recovery – Problems.

UNIT III PROJECT PROFITABILITY AND FINANCIAL RATIOS

Estimation of project profitability – Investment alternatives – Income statement and financial ratios – Balance sheet preparation - problems.

UNIT IV ECONOMIC BALANCE IN EQUIPMENTS

Essentials of economic balance -- Economic balance in batch operations -- Cyclic operations -- Economic balance for insulation -- Evaporation -- Heat transfer equipment's -- Case Study.

UNIT V PRODUCTION PLANNING CONTROL

Work measurement techniques – Motion study – Principles of time study – Elements of production control – Forecasting – Planning – Routing – Scheduling – Dispatching – Inventory and control – Control charts Role of control charts in production and quality control – Case Study.

Contact Periods:

Lecture:	45 Periods	Tutorial:	Periods	Practical: - Periods	Project:	- Periods
	°				Total:	45 Periods

TEXT BOOKS:

- Max S. Peters and Klaus D. Timmerhaus, "Plant design and Economics for Chemical Engineers", 5th Edition, McGraw – Hill, Inc. 2017.
- 2. Ahuja K.K, "Industrial management and Organisational Behaviour", 7th Edition, Khanna publishers, New Delhi, 1998.

REFERENCES:

- 1. Kenneth K. Humphreys, "Project and Cost Engineers Handbook", Marcei Dekker, New York, 10th Edition, 2005.
- 2. R. Panneerselvam, "Engineering Economics", 13th Edition, PHI Learning Pvt. Ltd, 2012.

Dr. S. Balasubramanian, M.Tech., Ph.D. Professor & Head Department of Chemical Engineering KPR Institute of Engineering & Technology Arasur, Coimbatore - 641 407

9

9

9

9

EVALUATION PATTERN:

Assessment I (100 Marks)		Assessme (100 Mar		Total Internal	End Semester	
*Individual Assignment / Case Study / Seminar / Project / MCQ	Written Test	*Individual Assignment / Case Study / Seminar / Project / MCQ	Written Test	Assessments	Examinations	
40	60	40	60	200	100	
	<u>.</u>			40	60	
	То	tal		10	0	

*Role Play / Group Discussions / Debates / Oral Presentations / Poster Presentations / Technical presentations can also be provided. Course Coordinator can choose any one / two components based on the nature of the course.

PRE-REQUISITES:

Nil

COURSE OBJECTIVES:

- Study the different aspects of process design that impact process safety
- Implement a fundamentally safer design for the operation of the entire process plant
- Assess the mechanical reliability of process equipment

COURSE OUTCOMES:

Upon completion of the course, the student will be able to

CO1: Analyse the design of a Piping System (Analyze)

- CO2: Acquire the knowledge in the design and drawings of Heat Exchangers (Understand)
- CO3: Understand the concept of Evaporation (Understand)
- **CO4**: Apply the concepts involved in phase separation and design of Distillation, and Absorption Columns (Apply)

CO5: Apply the skills in mechanical design of Pressure Vessels (Apply)

CO-PO MAPPING:

Correlation levels: 1: Slight (Low)			2: Moderate (Medium)			3: Substantial (High)								
CO5	3	3	3	3	-	-	-	1	1	1	2	2	2	2
CO4	3	3	3	3	-	-	-	1	1	1	2	2	2	2
СОЗ	3	3	3	3	-	•	-	1	1	1	2	2	2	2
CO2	3	3	3	3	-	-	-	1	1	1	2	2	2	2
CO1	3	3	3	3	-		-	1	1	1	2	2	2	2
POs COs	PO1	PO2	PO3	PO4	PO5	P06	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO

SYLLABUS:

UNIT I INTRODUCTION

6+3

6 + 3

Importance of Process Diagrams in Process Engineering, Process Design of piping system

UNIT II HEAT TRANSFER EQUIPMENT -- I

Process design of double pipe Heat Exchangers and Shell and Tube Heat Exchangers.

133

UNIT III	HEAT TRANSFER EQUIPMENT - 11	6+3
Process de	sign of Condensers and Evaporators (single effect & multi-effect evaporator).	
UNIT IV	MASS TRANSFER EQUIPMENTS	6 + 3
Process de	sign of Distillation Column and Absorption Column	
UNIT V	STORAGE EQUIPMENTS	6 + 3
Process de	sign of Pressure Vessels and Storage Vessels.	
LIST OF E	KPERIMENTS	
1. Design	and drawing of piping system	
2. Design	and drawing of double pipe heat exchanger	
3. Design	and drawing of shell and tube heat exchanger	
4. Design	and drawing of condenser	
5. Design	and drawing of evaporator	
6. Design	and drawing of distillation column	
7. Design	and drawing of absorption column	
8. Design	and drawing of pressure vessel	
9. Design	and drawing of storage vessel	
Contact Pe	ariods:	
Lecture:	30 Periods Tutorial: 15 Periods Practical: – Periods Project: 30 F	Periods
	Total: 75 F	Periods

TEXT BOOKS:

- 1. Coulson Richardson's., "Chemical Engineering Design, Vol.6, 4th Edition, Elsevier, 2005.
- 2. D. Q. Kern, "Process Heat Transfer" 21st Edition, McGraw Hill International Book Company, 1983.

REFERENCES:

- 1. Green D. W., "Perry's Chemical Engineer's Handbook," 9th Edition, McGraw Hill, 1934.
- 2. McCabe W.L., Smith J.C., Harriott P. Unit Operations in Chemical Engineering, 7th Edition, McGraw Hill, 2017.

Dr. S. Balasubramanian, M.Tech., Ph.D. Professor & Head Department of Chemical Engineering KPR Institute of Engineering & Technology Arasur, Coimbatore - 641 407

B.TECH. - CH - R2021 - CBCS

EVALUATION PATTERN:

Continu	ious Interna	l Assessme	nts		End Semester Examinations
Assessment I (Theo (100 Marks)	ry)		Theory Examinations		
*Individual Assignment / Case Study / Seminar / Mini Project / MCQ		Review I	Review II	Review III	(Examinations will be conducted for 100 Marks)
40	60 15 25 60				2
25			25	50	
	50				
		Total: 1	00		

*Role Play / Group Discussions / Debates / Oral Presentations / Poster Presentations / Technical presentations can also be provided. Course Coordinator can choose any one / two components based on the nature of the course.

MA

B.TECH. - CH - R2021 - CBCS

SEMESTER VII

			Cate	gory	: PCC	2
U21CH704	PROCESS CONTROL LABORATORY	L	т	P	J	С
		0	0	2	0	1

PRE-REQUISITES:

U21CH603 – Process Instrumentation, Dynamics and Control

COURSE OBJECTIVES:

- To determine experimentally the methods of controlling the processes
- To measure parameters using process simulation techniques
- To tune the process for better performance

COURSE OUTCOMES:

Upon completion of the course, the student will be able to

- CO1: Understand the response of first and second systems (Understand)
- CO2: Understand the response of Interacting and non-interacting systems (Understand)
- CO3: Understand the response of closed loop systems (Understand)
- CO4: Perform the tuning of flow, pressure and level system (Apply)
- CO5: Understand the characteristics of control valves (Understand)

CO-PO MAPPING:

POs COs	P01	P02	PO3	PO4	PO5	P06	P07	P08	PO9	PO10	P011	PO12	PSO1	PSO2
C01	3	2	1	-	2	-	•	•	•	•	-	•	1	1
CO2	3	2	1	-	2	-	-	-	-	-	-	-	1	1
CO3	3	2	1	-	2	-	-	-	-	-	-	-	1	1
C O 4	3	2	1	-	2	-	+	-	-	-	-	-	1	1
CO5	3	2	1	-	2	:	-	-	-	-	-	-	1	1
Correlat	Correlation levels: 1: Slight (Low)				2:	2: Moderate (Medium)				3: Substantial (High)				

LIST OF EXPERIMENTS

- 1. Response of Non-Interacting level system
- 2. Response of Interacting level system
- 3. Response of first order system
- 4. Response of second order system
- 5. Tuning of a level system

- 6. Tuning of a pressure system
- 7. Tuning of a thermal system
- 8. Characteristics of different types of control valves
- 9. Closed loop response of cascade control system
- 10. Flow co-efficient of control valves

Contact Periods:

Lecture: - Periods	Tutorial: - Periods	Practical: 30 Periods	Project:	- Periods
			Total:	30 Periods

TEXT BOOKS:

- 1. Dale E. Seborg, Thomas F. Edgar, Duncan A. Mellichamp , Process dynamics and control I, 2nd Edition John Wiley & Sons, Inc, 2013.
- 2. Marlin, T. E., "Process Control ", 2nd Edition, McGraw Hill, New York, 2000.

REFERENCES:

- 1. Smith, C. A. and Corripio, A. B., "Principles and Practice of Automatic Process Control", 2nd Edition, John Wiley, New York, 1997.
- 2. Joseph A. Edminister, Mahmood Nahvi, "Electric Circuits", 5th Edition, Schaum's outline series, McGraw Hill Education, New Delhi, 2017

EVALUATION PATTERN:

Continuous Internal Assess	ments				
Evaluation of Laboratory Observation, Record (Rubrics Based Assessments)	Test	End Semester Examination			
75	25				
100		100			
60	40				
	100				

B.TECH. – CH – R2	2021 – CBCS	Cer	ginee otre (and a set	KP	
		Cou	dem Irses Cate		PCO	>
U21CH705	DESIGN AND SIMULATION LABORATORY	L	Т	Р	J	С
		0	0	2	0	1

PRE-REQUISITES:

Nil

COURSE OBJECTIVES:

- To predict the performance of the process
- To optimize the design and improve existing ones .
- To simulate and improve the performance of the process •

COURSE OUTCOMES:

Upon completion of the course, the student will be able to

CO1: Build flowsheet models and summarize basic unit operations (Understand)

CO2: Define facilities, materials, utilities and chemical reactions (Understand)

CO3: Summarize physical properties (Understand)

CO4: Link models to plant process data (Apply)

CO5: Integrate Aspen Simulation Workbook with add in tools in Microsoft Excel Spread sheet (Apply)

POs COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	P09	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	2	2	З	-	-	-	-	-	1	1	2	2
CO2	3	2	2	2	3	-	-	-	-	-	1	1	2	2
CO3	3	2	2	2	3	-	-	-	-		1	1	2	2
CO4	3	2	2	2	3	-	-	-	-	-	1	1	2	2
CO5	3	2	2	2	3	-	-	-	-	-	1	1	2	2
Correlation levels: 1: Slight (Low)			2: Moderate (Medium)			,3: Substantial (High)								

CO-PO MAPPING:

LIST OF EXERCISES USING Aspen Plus ™

- 1. Steady state simulation of Heat Exchanger
- 2. Steady state simulation of a CSTR
- 3. Steady state simulation of Flash vessel

Dr. S. Balasubramanian, M.Tech., Ph.D. Professor & Head Department of Chemical Engineering KPR Institute of Engineering & Technology Arasur, Coimbatore - 641 407

1)-

B.TECH. - CH - R2021 - CBCS

- 4. Steady state simulation of Distillation Column
- 5. Steady state simulation of an Absorption column
- 6. Dynamic simulation of Heat Exchanger
- 7. Dynamic simulation of a CSTR
- 8. Dynamic simulation of Flash vessel
- 9. Dynamic simulation of Distillation Column
- 10. Dynamic simulation of an Absorption column

Contact Periods:

Lecture: - Periods	Tutorial: - Periods	Practical: 30 Periods	Project:	- Periods
			Total:	30 Periods

EVALUATION PATTERN:

Continuous Internal Assess	ments	
Evaluation of Laboratory Observation, Record (Rubrics Based Assessments)	Test	End Semester Examinations
75	25	
100		100
60	40	
	100	

	SEMESTER VII	Acat Coul	lemi rses	6 / 3	echno	
		simble	Cate	gory	EEC	2
U21CH706	PROJECT WORK PHASE - I	L	T	Р	J	С
		0	0	0	4	2

Enginee

Centre for

PRE-REQUISITES:

Nil

COURSE OBJECTIVES:

- To develop the ability to identify and solve a specific problem in the field of Chemical Engineering
- To train the students in preparing project reports and to face reviews and viva voce examination

COURSE OUTCOMES:

Upon completion of the course, the student will be able to

- **CO1:** Identify the problems through an extensive survey of literature related to Chemical Engineering and its allied areas (Understand)
- CO2: Write a methodology to perform the experiments/analytical/simulation for the chosen problem (Apply)
- CO3: Analyse the work as an individual or in a team in development of technical projects (Analyse)
- **CO4:** Evaluate the collected information of identified problem in Chemical Engineering and its allied areas (Evaluate)
- CO5: Propose a possible solution step for the problem identified in Chemical Engineering and its allied areas (Create)

POs COs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	2	3	2	2	2	2	3	3	2	3	3	3
CO2	3	2	2	3	2	2	2	2	3	3	2	3	3	3
CO3	3	2	2	3	2	2	2	2	3	3	2	3	3	3
CO4	3	2	2	3	2	2	2	2	3	3	2	3	3	3
CO5	3	2	2	3	2	2	2	2	3	3	2	3	3	3
Correlatio	on leve	els:	1: Sli	ight (L	.ow)	2: M	oderat	te (Me	dium)		3: Su	bstantia	al (High)	

CO-PO MAPPING:

STRATEGY

To identify a topic of interest in consultation with Faculty/Supervisor. Review the literature and gather information pertaining to the chosen topic. State the objectives and develop a methodology to achieve the objectives. Carryout the design / fabrication or develop computer code. Demonstrate the novelty of the project through the results and outputs

Contact Periods:

Lecture:	- Periods	Tutorial: - Periods	Practical:	- Periods	Project:	60 Periods	191	
			140	Departi KPR Instit	lasubram Profess nent of Cl ute of End	60 Periods Janian, M.Te Jor & Head hemical Eng Jineering & T batore - 641	ineeri Techn	ng ology

EVALUATION PATTERN:

Continuous Internal Assessments (100 Marks)									
Review I	Review II	Review III	Total Assessmen						
30	30	40	100						

OCHEOTED VIII

	SEMESTER VIII	121	1268	13	\$/	
		oimb	Cate	gory	: EEC	2
U21CH801	PROJECT WORK PHASE - II	L	T	P	J ₁	C
		0	0	0	20	10

PRE-REQUISITES:

Nil

COURSE OBJECTIVES:

- To develop the ability to identify and solve a specific problem in the field of Chemical Engineering and its allied areas.
- To train the students in preparing project reports and to face reviews and viva voce examination

COURSE OUTCOMES:

Upon completion of the course, the student will be able to

- CO1: Practice acquired knowledge within the chosen area of technology for project development (Apply)
- CO2: Discuss and justify the technical aspects of the chosen project with comprehensive and systematic approach (Apply)
- CO3: Analyse, reproduce, improve and refine technical aspects for engineering projects (Analyse)

CO4: Evaluate the collected data in the progress of the project (Evaluate)

CO5: Validate, communicate and report effectively project related activities and findings (Create)

POs COs	PO1	PO2	PO3	PO4	P05	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	2	3	2	2	2	2	3	3	2	3	3	3
ĊO2	3	2	2	3	2	2	2	2	3	3	2	3	3	3
CO3	3	2	2	3	2	2	2	2	3	3	2	3	3	3
CO4	3	2	2	3	2	2	2	2	3	3	2	3	3	3
CO5	3	2	2	3	2	2	2	2	3	3	2	3	3	3
Correlatio	on leve	ls:	1: Sli	ght (L	ow)	2: M	derat	te (Me	dium)		3: Su	bstantia	al (High)	

CO-PO MAPPING:

STRATEGY

To identify a topic of interest in consultation with Faculty/Supervisor. Review the literature and gather information pertaining to the chosen topic. State the objectives and develop a methodology to achieve the objectives. Carryout the design / fabrication or develop computer code. Demonstrate the novelty of the project through the results and outputs

Contact Periods:

Lecture: - Periods Tutorial: - Periods

Practical: - Periods

Project: Total:

Enginee

Centre for Academic

62

300 Periods 300 Periods

Dr. S. Balasubramanian, M. Iech., Ph.J. Professor & Head Department of Chemical Engineering KPR Institute of Engineering & Technology Arasur, Coimbatore - 641 407

EVALUATION PATTERN:

Continuous	Internal Assessm	End Semester Examinations (60 Marks)			
Review I	Review II	Review III	Project Report	Viva-Voice	
10	15	15	10	50	
		Total: 100 Mar	ks		

PROFESSIONAL ELECTIVE

VERTICAL I

			Cate	jory:	PEC	;
U21CHP01	POLYMER SCIENCE AND ENGINEERING	L	т	Ρ	J	С
		3	0	0	0	3

PRE-REQUISITES:

Nil

COURSE OBJECTIVES:

- To understand the basic concepts of polymer structure and properties.
- To understand the Mechanism of various Polymerizations
- To understand the manufacturing processes techniques and kinetics of various polymers

COURSE OUTCOMES:

Upon completion of the course, the student will be able to

- CO1: Explain the basic concepts of polymer science, thermodynamics, phase separations and conformational analysis (Understand)
- CO2: Describe the physico-chemical, morphology, rheology, and mechanical properties of bulk polymers by evaluating through respective experimentations (Understand)
- CO3: Classify the polymers, polymerization techniques and perform the kinetic and statistical considerations of polymers (Understand)
- CO4: Compare and analyze the properties and performance of commercial polymers (Analyze)
- **CO5:** Modify the recent advancements and apply in polymeric processing techniques like moulding, compounding, and vulcanizing (Apply)

Correlation levels: 1: 8			1: Slig	1: Slight (Low)			2: Moderate (Medium)				3: Substantial (High)				
CO5	2	2	-	2	-	2	-	-	-		-	-	1	1	
CO4	2	2	-	2	-	2	-	-	-	-	-	-	1	1	
CO3	2	2	-	2	-	2	-	-	-	-	-	-	1	1	
CO2	2	1	-	2	-	2	-	-	-	-	-	-	1	1	
CO1	2	1	-	1	-	2	-	-	-	-	-	-	1	1	
POs COs	P01	PO2	PO3	PO4	PO5	P06	P07	P08	P09	PO10	P011	P012	PSO1	PSO	

CO-PO MAPPING:

SYLLABUS:

UNIT I INTRODUCTION

Basic Concepts and classification of polymers – Functionality – Number and weight average – Sedimentation and viscosity average molecular weights – Molecular weight and degree of polymerization – Glass transition temperature – Addition – Condensation – Step-growth and chain growth polymerization – Molecular weight estimation

UNIT II POLYMER STRUCTURE

Polymer chains and their characterization -- The science of large molecules -- Basic concepts of polymer science -- History of macromolecular science -- Molecular forces and chemical bonding in polymers -- Polymer solutions -- Criteria for polymer solubility -- Conformations of dissolved polymer chains -- Thermodynamics of polymer solutions -- Phase separation in polymer solutions

UNIT III POLYMERIZATION KINETICS

Polymerization Step-reaction (Condensation) polymerization – Classification of polymers and polymerization mechanisms – Chemistry of step wise polymerization – Kinetics and statistics of linear stepwise polymerizations – Radical chain (Addition) polymerization – Chemistry of vlnyl polymerization – Laboratory methods in vinyl polymerization – Steady state kinetics of vinyl radical polymerization – Copolymerization – Kinetics of copolymerization – Composition of copolymers, Chemistry of copolymerization

UNIT IV SYNTHETIC FIBRES

Properties of commercial polymers – Hydrocarbon plastics and elastomers – Low density (branched) polyethylene – High density (linear) polyethylene – Polypropylene – Natural rubber and other polyisomers – Rubbers derived from butadiene – Other carbon chain polymers – Polystyrene and related polymers – Acrylic polymers, poly(vinyl esters) and derived polymers – Heterochain thermoplastics – Polyamides – Thermosetting resins – Phenolic resins – Amino resins

UNIT V PLASTICS

Polymer processing Plastic Technology – Molding, other processing methods – Fillers – Plasticizers and other additive – Fiber Technology – Textile and fabric properties – Spinning – Fiber after treatments - Elastomer technology – Compounding and elastomer properties – Vulcanization – Reinforcement

Contact Periods:

Lecture: 45 Periods

Tutorial: - Periods

s Practical: - Periods

Project: - Periods

Total: 45 Periods

Ally

Dr. S. Balasubramanian, M.Tech., Ph.D. Professor & Head Department of Chemical Engineering KPR Institute of Engineering & Technology Evolution Colmbatore - 641 407

145

9 ...

9

TEXT BOOKS:

- 1. Charles E., Carraher Jr., * Seymour/carraher's polymer chemistry", 7th Edition, CRC Press, 2012
- 2. Bhatnagar M.S., "A Textbook of Polymers", 1st Edition, S. Chand and Company Ltd., 2012

REFERENCES:

- 1 Fried J.R., "Polymer Science and Technology", 7th Edition, Prentice Hall of India Pvt Ltd., 2003
- 2 Billmeyer F.W., "Textbook of Polymer Science", 3rd Edition, Wiley Inter science, 1984

	Contin	uous Internal As	sessment	8	
Assessme (100 Mari		Assessment II (100 Marks)			End Semester
*Individual Assignment / Case Study / Seminar / Project / MCQ	Written Test	*Individual Assignment / Case Study / Seminar / Project / MCQ	Written Test	Total Internal Assessments	Examinations
40 •	60	40	60	200	100
	_			40	60
	То	tal		1	00

EVALUATION PATTERN:

*Role Play / Group Discussions / Debates / Oral Presentations / Poster Presentations / Technical presentations can also be provided. Course Coordinator can choose any one / two components based on the nature of the course.

VERTICAL I

	J21CHP02 CHEMICAL METALLURGY	Category: PEC								
U21CHP02	CHEMICAL METALLURGY	L	Т	P	J	C				
		3	0	0	0	3				

PRE-REQUISITES:

• Nil

COURSE OBJECTIVES:

- To understand the basics of metallurgy.
- To know the techniques of extraction from its ores.
- To understand the method of operation of various converters and furnaces.

COURSE OUTCOMES:

Upon completion of the course, the student will be able to

- CO1: Identify, which sequence of metallurgical processes should be applied for the production of a specific metal (Understand)
- CO2: Infer the various extraction and processing techniques (Understand)
- CO3: Interpret alternative processes for production of a metal from its mineral (Understand)
- CO4: Apply principles to chemical systems and processes (Apply)
- CO5: Design metallurgical processes considering the materials, reactors, temperatures and other factors (Analyze)

CO-PO MAPPING:

Correlation	s:	1: Slie	ght (L.c	w)	2: Moderate (Medium)			dium)		3: Sub	stantia	l (High))	
CO5	3	2	1	-	1	-	-	-	-	-	-	-	1	1
CO4	3	2	1	•	1	-	-	-	-	-	-	-	1	1
CO3	3	2	1	-	1	-	-	-	-	-	-	-	1	1
CO2	3	2	1	-	1	-	-	-	-	-	-	-	1	1
CO1	3	2	1	-	1	-	-	-	-	-	•	-	1	1
POs COs	P01	P02	PO3	PO4	PO5	P06	P07	PO8	P09	PO10	PO11	PO12	PSO1	PSO.

SYLLABUS:

UNIT I PYRO METALLURGY

Classification of ores – Basics of pyro metallurgy – Calcination – Roasting and types of roasting – Thermodynamics of extraction

UNIT II STEPS OF METALLURGY

Sintering – Palletisation and Smelting – Basic principles with examples – Slags – Classification – Properties and uses

147

Dr. S. Balasubramanian, M.Tech., Ph.D. Professor & Head Department of Chemical Engineering KPR Institute of Engineering & Technology Arasur, Coimbatore - 641 407

9

9

9

9

UNIT III HYDRO METALLURGY

Hydrometallurgy: Advantages and disadvantages – Principles and types of leaching – Solution, purification by ion exchange and solvent extraction – Cementation

UNIT IV EXTRACTION PROCESSES

Extraction of Iron from ores next word capital letter Operation of Coke Ovens – Blast Furnaces – Sintering Plants – Pig Casting Machine – Slag removal and Disposal – Steel Making Processes – Bessemer convertor – Open Hearth Furnaces and LD convertor – Alloy Steel Production

UNIT V NON-FERROUS METALS

Extraction of nonferrous metals from ores – Copper, Aluminium, Lead and Zinc – Electro metallurgy of extraction and refining

Contact Periods:

Lecture: 45 Periods	s Tutorial: - Periods	Practical: - Periods	Project:	- Periods
			Total:	45 Periods

TEXT BOOKS:

- D. Swarup.Joseph J, Massie, "Essentials of Management", 1st Edition, Prentice Hall of India Pvt. Ltd. 1985
- Bequette. B.W, "Process Dynamics Modelling, Analysis and Simulation", 1st Edition, Prentice Hall, 1998

REFERENCES:

- 1. A.R. Bailey, "Introduction to Metallurgy", 1st Edition, 1987
- 2. Franks, R. G. E., "Mathematical Modeling in Chemical Engineering", 1st Edition, John Wiley, 1967

EVALUATION PATTERN: **Continuous Internal Assessments** Assessment II Assessment I (100 Marks) (100 Marks) End Semester Total Internal *Individual *Individual Examinations Assessments Assignment / Assignment / Written Written Case Study / Case Study / Test Test Seminar / Mini Seminar / Mini Project / MCQ Project / MCQ 200 100 40 40 60 60 40 60 Total 100

*Role Play / Group Discussions / Debates / Oral Presentations / Poster Presentations / Technical presentations can also be provided. Course Coordinator can choose any one / two components based on the nature of the course.

Institute	5/	entre cad Cou	FOL		
	(4)	Cate	gory:	PEC	:
	L	T	P	J	C
	3	0	0	0	3

VERTICAL I

FLUIDIZATION ENGINEERING

PRE-REQUISITES:

U21CHP03

Nil

COURSE OBJECTIVES:

- To understand the design aspects of fluidized beds.
- To understand the industrial applications of fluidized bed systems
- To become familiar with the concept of heat and mass transfer in fluidized systems
 COURSE OUTCOMES;

Upon completion of the course, the student will be able to

CO1: Understand the fluidization phenomenon (Understand)

CO2: Apply various correlations involved in the fluidization engineering (Apply)

CO3: Identify the behaviour of fluidized beds (Understand)

CO4: Apply the industrial applications of fluidized systems (Apply)

CO5: Analyze the design aspects of fluidized bed system (Analyze)

CO-PO MAPPING:

Correlation levels:			1: Slight (Low)			2: Moderate (Medium)				3: Substantial (High)				
CO5	2	2	-	-	1	-	-	-	-	1	•	-	1	1
CO4	2	2	-	-	1	-	-	-	-	1	-	-	1	1
CO3	2	2	-	-	1	-	-	-	-	1	-	-	1	1
CO2	2	2	-	-	1	-	•	-	-	1	-	-	1	1
CO1	2	2	-	-	1	-	-	-	-	1	-	-	1	1
POs COs	P01	PO2	PO3	P04	PO5	PO6	P07	PO8	P09	PO10	PO 11	PO12	PSO1	PSO

SYLLABUS:

UNIT I BASICS OF FLUIDIZATION

Packed bed – Velocity – Pressure drops relations – Correlations of Ergun – Kozney karman Development of fluidization from fixed bed

UNIT II FLUIDIZED BED TYPES

Minimum fluidization conditions - Expanded bed - Moving solids and dilute phase

Dr. S. Balasubramanian, M.Tech., Ph.D. Professor & Head Department of Chemical Engineering KPR Institute of Engineering & Technology Arasur, Colmbatore - 641 407

9

UNIT III	DESIGN ASI	PECTS			9							
Channelli	ng – Bed expan	sion in liquid – Solid fluidiz	ations - Design aspects	of fluidized	i bed systems							
UNIT IV	HEAT AND I	MASS TRANSFER IN FL	JIDIZED BEDS		9							
Heat and	mass transfer in	n fluidized bed systems	Industrial applications of	fluidized b	ed systems							
UNIT V	UNIT V OTHER TYPES OF FLUIDIZATIONS 9											
Single sta	ige and multista	ge fluidization – Collectior	n of fines - Use of cyclor	Ies								
Contact I	Periods:											
Lecture:	45 Periods	Tutorial: - Periods	Practical: - Periods	Project:	- Periods							
				Total:	45 Periods							

TEXT BOOKS:

- 1. Levenspiel, "Fluidization Engineering", 2nd Edition, Butterworth Heinmann, 1991
- 2. Robert H. Perry and Don W. Green, "Perry's Chemical Engineer's Hand Book", 7th Edition, Mc Graw Hill, International, 1997
- Munson, B. R., Young, D.F., Okiishi, T.H. "Fundamentals of Fluid Mechanics", 5th Edition, John Wiley, 2006

REFERENCES:

- 1. Rowe and Davidson, "Fluidization", 1st Edition, Academic Press ,1981.
- 2. Leva, M., "Fluidization", 1st Edition, McGraw Hill Book Co, 1989.

EVALUATION PATTERN:

	Contin	uous Internal As	sessments		
Assessme (100 Mark		Assessment II (100 Marks)			End Semester
*Individual Assignment / Case Study / Seminar / Mini Project / MCQ	Written Test	*Individual Assignment / Case Study / Seminar / Mini Project / MCQ		Total Internal Assessments	Examinations
40	60	40	60	200 -	100
	_			40	60
	To	tal		10	0

*Role Play / Group Discussions / Debates / Oral Presentations / Poster Presentations / Technical presentations can also be provided. Course Coordinator can choose any one / two components based on the nature of the course.

VERTICAL I

			Cate	gory	: PEC	2
U21CHP04	PROCESS PLANT UTILITIES	L	Т	P	J	С
		3	0	0	0	3

PRE-REQUISITES:

Nil

COURSE OBJECTIVES:

- To understand about plant utilities like steam, compressed air etc.
- To understand about important of utilities
- To know about fuel and waste disposal

COURSE OUTCOMES:

Upon completion of the course, the student will be able to

CO1: Understand the importance of health, safety and the environment in process industries (Understand)

CO2: Describe about steam, power, water, air is extensively used in process industries (Understand)

- CO3: Explain about efficient operation is imperative for economic and safe operation is essential for the survival of industries (Understand)
- CO4: Understand about fuels and waste management (Understand)
- CO5: Integrate with utilities used in the industries (Analyze)

CO-PO MAPPING:

Correlation	rrelation levels: 1: Slight (Low)					2: Moderate (Medium)) 3: Substantial (High)				
CO5	1	2	-	-	-	1	2	1	2	2	-	-	2	2
CO4	1	2	-	-	-	1	2	1	2	2	-	•	2	2
CO3	1	2	B -	-	-	1	2	1	2	2	-	•	2	2
CO2	1	2	-	-		1	2	1	2	2	-	-	2	2
CO1	1	2	-	-	-	1	2	1	2	2	-	-	2	2
POs COs	P01	P02	PO3	PO4	P05	P06	P07	PO8	P09	PO10	PO11	PO12	P\$01	PSO

SYLLABUS:

UNIT I IMPORTANCE OF UTILITIES

Hard and Soft water – Requisites of Industrial Water and its uses – Methods of water Treatment such as Chemical Softening and Demineralization – Resins used for Water Softening and Reverse Osmosis – Effects of impure Boiler Feed Water

9

151

UNIT II STEAM AND STEAM GENERATION

Properties of Steam – Problems based on Steam – Types of Steam Generator such as Solid Fuel Fired Boiler – Waste Gas Fired Boiler and Fluidized Bed Boiler – Scaling and Trouble Shooting. Steam Traps and Accessories

UNIT III REFRIGERATION

Refrigeration Cycles – Methods of Refrigeration used in Industry and Different types of Refrigerants such as Monochlorodifluro Methane – Chlorofluro Carbons and Brins – Refrigerating Effects and Liquefaction Processes

UNIT IV COMPRESSED AIR

Classification of Compressor – Reciprocating Compressor – Single Stage and Two Stage Compressor – Velocity Diagram for Centrifugal Compressor – Silp Factor – Impeller Blade Shape. Properties of Air – Water Vapors and use of Humidity Chart – Equipment used for Humidification – Dehumidification and Cooling Towers

UNIT V FUEL AND WASTE DISPOSAL

Types of Fuel used in Chemical Process Industries for Power Generation such as Natural Gas – Liquid Petroleum Fuels – Coal and Coke – Internal Combustion Engine – Petrol and Diesel Engine – Waste Disposal

Contact Periods:

Lecture:	45 Periods	Tutorial: - Periods	Practical: - Periods	Project:	 Periods
				Total:	45 Periods

TEXT BOOKS:

- Eckenfelder, W. W. Jr. "Industrial Water Pollution Control", 1st Edition, McGraw-Hill: New York, 1966
- 2. P. L. Ballaney, "Thermal Engineering", 1ª Edition, Khanna Publisher New Delhi, 1986

REFERENCES:

- 1. P. N. Ananthanarayan, "Basic Refrigeration & Air conditioning", 1st Edition, Tata McGraw Hill, New Delhi, 2007
- 2. Jack Broughton, "Process Utility Systems Introduction to Design Operation and Maintenance", Institution of Chemical Engineers, UK,1994.

Dr. S. Balasubramanian, M.Tech., Ph.D. Professor & Head Department of Chemical Engineering KPR Institute of Engineering & Technology Arasur, Coimbatore - 641 407

ĝ

9

9

9

а.

EVALUATION PATTERN:

	Contin	uous Internal As	sessments		
Assessme (100 Mark			Assessment II (100 Marks)		End Semester
*Individual Assignment / Case Study / Seminar / Mini Project / MCQ	Written Test	*Individual Assignment / Case Study / Seminar / Mini Project / MCQ	Written Test	Total Internal Assessments	Examinations
40	60	40	60	200	100
				40	60
	Το	tal		10	0

*Role Play / Group Discussions / Debates / Oral Presentations / Poster Presentations / Technical presentations can also be provided. Course Coordinator can choose any one / two components based on the nature of the course.

VERTICAL I

			Cate	gory:	PEC	2
U21CHP05	INDUSTRIAL SAFETY	L	Т	Р	J	C
		3	0	0	0	3

PRE-REQUISITES:

Nil

COURSE OBJECTIVES:

- To give an idea about different hazards and other safety procedures to be followed in any industry.
- To have a comprehensive knowledge of industrial safety and occupational health will be immensely useful for the students from all fields
- To impart knowledge to the students about source of hazards and control techniques

COURSE OUTCOMES:

Upon completion of the course, the student will be able to

- CO1: Identify hazardous conditions and practices affecting people, property and the environment, develop and evaluate appropriate strategies designed to mitigate risk (Understand)
- CO2: Identify the hazardous element due to fire, radiation, electrical and atmospheric contaminants (Understand)
- CO3: Apply the knowledge on handling and storage of chemical hazards (Apply)
- CO4: Analyze qualitative risk assessment using HAZOP, FMEA and fault tree analysis (Analyze)
- **CO5:** Apply the safety principles to identify the fire hazards and its safety protecting system in practices (Apply)

CO-PO MAPPING:

Correlation levels: 1; Slight (Low)				2: M	oderat	e (Med	dium)		3: Sub	stantia	lí (High)		
CO5	2	2	-	-	-	2	-	-	-	-	-	-	1	1
CO4	2	2	•	-	-	2	-	-	-	-	-	-	1	1
CO3	2	2	-	-	-	2	-	-	-	-	•	-	1	1
CO2	3	-	-	-	-	2	-	-	-	-	-	-	1	1
CO1	3	-	-	-	-	2	-	-	-	-	-	-	1	1
POs COs	P01	PO2	PO3	PO4	PO5	P06	P07	PO8	P09	PO10	PO11	PO12	PSO1	PSO2

SYLLABUS:

UNIT I ACCIDENT STATISTICS

9

Introduction – Safety program – Engineering ethics – Accident and loss statistics: acceptable risk, public perception, chemical hazards – Toxic chemicals – Dust – Gases – Fumes – Vapours and

Dr. S. Balasubramanian, M.Tech., Ph.D. Professor & Head Department of Chemical Engineering KPR Institute of Engineering & Technology Arasur, Coimbatore - 641 407

	Contin	uous Internal As	sessments			
Assessme (100 Mark		Assessme (100 Mar			End Semester	
*Individual Assignment / Case Study / Seminar / Mini Project / MCQ	Written Test	*Individual Assignment / Case Study / Seminar / Mini Project / MCQ	Written Test	Total Internal Assessments	End Semester Examination	
40	60	40	60	200	100	
				40	60	
	То	tal		10	00	

EVALUATION PATTERN:

*Role Play / Group Discussions / Debates / Oral Presentations / Poster Presentations / Technical presentations can also be provided. Course Coordinator can choose any one / two components based on the nature of the course.

an

smoke – The concept of threshold limits – Acute and chronic exposure effects – Personal monitoring – Biological sampling – Control measures

UNIT II TOXICOLÒGY

Industrial safety Chemical hazards classification – Hazards due to fire – Explosion – Toxic chemicals and radiation – Toxicology Dose vs. Response – Effects of Toxicant on Human – Toxicants Entry Route – Models for Dose and Response Curves – TLV and PEL

UNIT III BASICS OF FIRES AND EXPLOSION

Handling and storage of hazardous chemicals – Fire Triangle – Definitions – Flammability Characteristics of Liquid and Vapors – LOC and Inerting – Types of Explosions – Designs for Fire Prevention and Control

UNIT IV RISK ASSESSMENT

Risk analysis Risk assessment – Qualitative – Reconnoitres – Rapid and comprehensive risk assessment techniques: checklists – Indices – HAZOP – Maximum credible accident analysis – Fault tree analysis – Past accident analysis – FMEA (failure mode and effect analysis) – Quantitative risk assessment

UNIT V CONTROL OF FIRE AND EXPLOSION

Protection systems Emergency preparedness: Fire and explosion – Fire hazards – Fire pyramid. Types of fires – Types of fire extinguishers and its handling – Types of built in extinguishing system. Fire-fighting techniques – Emergency procedures and types of alarm systems

Contact Periods:

Lecture:	45 Periods	Tutorial: - Periods	Practical: - Perlods	Project:	- Periods
				Total:	45 Periods

TEXT BOOKS:

- 1. Crowl, Daniel A. and Louvar, Joseph F., "Chemical process safety fundamentals with applications", 3rd Edition, Prentice Hall, 2015
- Kletz, Trevor, "Histories of process plant disasters and how they could have been avoided", 1st Edition, Gulf Professional Publishing, 2003

REFERENCES:

- 1. Lees, F.P., "Loss Prevention in Process Industries", 3rd Edition, Butterworths, NewDelhl, 2005
- Buschmann, "Loss Prevention and Safety Promotion in the Process Industries", Elsevier Scientific, New York, 2005

155

MA

Dr. S. Balasubramanian, M.Tech., Ph.D. Professor & Head Department of Chemical Engineering KPR Institute of Engineering & Technology Arasur, Coimbatore - 641 407

9

9

9

B.TECH. – CH – R2	VERTICAL I			tre fi dem Jrse:		E Condo
U21CHP06	PULP AND PAPER TECHNOLOGY	*	Cate	gory:	PEO	c
UZICHPU		3	0	0	0	3

PRE-REQUISITES:

Nil

COURSE OBJECTIVES:

- To apply basic concepts of pulp and paper technology to produce paper
- To the reactions and unit operations steps appropriately in manufacturing of paper
- To perform various chemical tests to monitor quality of raw material, output quality and influent/affluent

COURSE OUTCOMES:

Upon completion of the course, the student will be able to

CO1: Understating the paper and pulp technology (Understand)

CO2: Describe the pulping process analysis with different types (Understand)

- CO3: Apply the wet process application of paper products (Apply)
- CO4: Explain the applications of cellulose and Lignin chemicals (Understand)
- CO5: Understand the pollution potentials of Indian pulp and paper industry and waste disposal

techniques (Understand)

CO-PO MAPPING:

POs COs	P01	PO2	PO3	PO4	P05	P06	P07	PO8	P09	PO10	PO11	PO12	PSO1	PSO
CO1	3	2	1	1	-	-	-	-	-	-	-	-	1	1
CO2	3	2	1	-	-	-	-	-	-	-	-	-	1	1
CO3	3	2	1	-	•	-	•	-	•	-	-	-	1	1
CO4	3	2	1	-	-	-	-	-	-	-	-	-	1	1
CO5	3	2	1	1	-	-	-	-	-	-	-	-	1	1
Correlation levels: 1: Slight (Low) 2: Moderate (Medium) 3: Substantial (High))									

SYLLABUS:

UNIT I BASICS OF PULP AND PAPER TECHNOLOGY

Pulp and paper industry Consumption pattern of paper – Cellulose raw material – Problems and scope of pulp and paper industries in India

9

anineerin

Dr. S. Balasubramanian, M.Tech., Ph.D. Professor & Head Department of Chemical Engineering KPR Institute of Engineering & Technology Arasur, Coimbatore - 641 407

9

9

9

9

UNIT II PULP

Pulping process: Sulphite pulping – Semichemical pulping – Mechanical and Thermo – mechanical pulping – Secondary fibber pulping – R.A.G. pulping- Dissolving pulp – Kraft pulping process– Comparison of different types of pulps – Black liquor recovery process

UNIT III PAPER

Types of paper products – Various raw materials: Fibrous and Non-Fibrous – Wet process for paper Manufacture – Fourdrinier machine – Economics of paper industry

UNIT IV CELLULOSE AND LIGNIN CHEMICALS

Properties of cellulose – Preparation of chemical cellulose – Lignin chemicals: Types – Properties of Di-methyl sulphides and Di- methyl sulfoxide – Applications of cellulose and Lignin chemicals

UNIT V WASTE DISPOSAL TECHNIQUES

Pollution potentials of Indian pulp and paper industry – Characteristics of Industrial Lignin water– Biotechnical approach for pollution – Enzymology for Lignin waste treatment.

Contact Periods:

Lecture: 45	Periods	Tutorial: - Periods	Practical: - Periods	Project:	- Periods
				Total:	45 Periods

TEXT BOOKS:

- 1. Rao M.Gopal, Sitting, Marshall, "Dryden's outlines of Chemical",1st Edition, Affilated East-West Press Pvt. Ltd., 1997
- 2. Austin, George T, "Shreves' Chemical Process Industries", 5th Edition, McGraw-Hill Education India Pvt. Ltd, 2017

REFERENCES:

- 1. Bhatia, S.C., "Environmental Pollution and Control in Chemical Process Industries", 1st Edition, Khanna Publishers, 2011
- 2. Trivedi, R.K., "Pollution Management in Industries", 1st Edition, Environmental Publication, 2007
- 3. Christopher J., "Handbook of Pulping and Paper making" ISBN-13: 978- 0120973620

EVALUATION PATTERN:

	Contin	uous Internal As	sessments		
Assessme (100 Mark		Assessme (100 Mar	Total Internal Assessments Written		End Semester
*Individual Assignment / Case Study / Seminar / Mini Project / MCQ	Written Test	*Individual Assignment / Case Study / Seminar / Mini Project / MCQ			Examinations
40	60	40	60	200	100
				40	60
	Το	tal		10	0

*Role Play / Group Discussions / Debates / Oral Presentations / Poster Presentations / Technical presentations can also be provided. Course Coordinator can choose any one / two components based on the nature of the course.

VERTICAL.II

		P	Cate	gory:	PEC	;
U21CHP07	FERTILIZER TECHNOLOGY	L	Т	P	J	С
		3	0	0	0	3

PRE-REQUISITES:

- Nil
- **COURSE OBJECTIVES:**
- Learn the fertilizer manufacturing including new or modified fertilizer products
- Understand the practical methods of production in a chemical factory
- Learn about the importance of nutrients

COURSE OUTCOMES:

Upon completion of the course, the student will be able to

CO1: Understand the classification of fertilizers and its application (Understand)

CO2: Understand process and properties of synthesis condition of different fertilizers (Understand)

CO3: Identify the manufacturing of potassium chloride and Sulphate (Understand)

CO4: Analyze the manufacturing of NPK and Ammonium Sulphate Phosphate (Analyse)

CO5: Analyze the Biofertilizer and preparation of Biofertilizer (Analyse)

CO-PO MAPPING:

CO5	3	2	-	-	1	-	-		-	-	-	-	1	1
CO4	3	2	-	-	1	-	-	-	-	-	-	-	1	1
CO3	3	2	-	-	1	•	-	-	-	•	-	-	1	1
CO2	3	2	-	-	1	-	-	-	-	-	-	-	1	1
CO1	3	2	-	-	1	-	-	-	-	-	-	-	1	1
POs COs	PO1	PO2	P03	PO4	P05	P06	P07	P08	PO9	PO10	P011	PO12	PSO1	PSO:

SYLLABUS:

UNIT I OVERVIEW OF FERTILIZER

Synthetic fertilizers – Classification of fertilizers – Role of essential Elements in plant Growth – Application of fertilizers considering Nutrient – Development of fertilizer industry – Fertilizer production and consumption in India – Nutrient contents of fertilizers

Dr. S. Balasubramanian, M.Tech., Ph.D. Professor & Head Department of Chemical Engineering KPR Institute of Engineering & Technology Arasur, Coimbatore - 641 407

Q

9

9

9

UNIT II NITROGENOUS FERTILIZERS

Physical & Chemical properties – Synthesis gas by Catalytic partial oxidation – Kellogg process and Haldor Topsoe process – Storage and Transportation of Ammonia – Manufacturing of Nitric Acid by Pressure ammonia oxidation process and Intermediate pressure ammonia oxidation process

UNIT III POTASSIUM FERTILIZERS

Physical, Chemical properties and uses of Potassium Chloride – Potassium nitrate – Potassium sulphate – Manufacturing of potassium chloride from sylvinite – Preparation of Potassium nitrate – Potassium sulphate

UNIT IV MISCELLANEOUS FERTILIZER

Manufacturing of NPK - Ammonium Sulphate Phosphate (ASP) - Calcium Ammonium Nitrate (CAN)

UNIT V BIO FERTILIZERS

Biofertilizers – Types of Biofertilizers – Nitrogen fixing Biofertilizers – Phosphate-solubilizing Biofertilizers – Preparation of a Biofertilizers

Contact Periods:

Lecture:	45 Periods	Tutorial:	- Periods	Practical: - Periods	Project:	- Periods
					Total:	45 Periods

TEXT BOOKS:

- 1. Ranjan Kumar Basak., "Fertilizer A textbook", 5th Edition, Kalyani Publishers, Chennai, 2016
- 2. Gustafson A.F., "Handbook of Fertlizers-Their sources, Make-up, Effects, and Use", 8th Edition, Read Books Ltd, New Delhi, 2010

REFERENCES:

- Austin G. T, "Shreve's Chemical Process Industries", 5th Edition, McGraw Hill Publications, New Delhi, 2017
- 2. Pandey & Shukla, "Chemical Technology", 2nd Edition, Vani Books Company, India, 1997
- Subba Rao N S, "Bio fertilizers in Agriculture", 6th Edition, Oxford & IBH Publishing Company, New Delhi, 1998
- 4. https://nptel.ac.in/courses/103107086
- 5. https://iopscience.iop.org/article/10.1088/1755-1315/250/1/012048/pdf

Ma-

Dr. S. Balasubramanian, M.Tech., Ph.D. Professor & Head Department of Chemical Engineering KPR Institute of Engineering & Technology Arasur, Coimbatore - 641 407

	Contin	uous Internal As	sessments		
Assessme (100 Mark	124	Assessme (100 Mar			End Semester
*Individual Assignment / Case Study / Seminar / Project / MCQ	Written Test	*Individual Assignment / Case Study / Seminar / Project / MCQ	Written Test	Total Internal Assessments	Examinations
40	60	40	60	200	100
				40	60
	То	tal	10	0	

EVALUATION PATTERN:

*Role Play / Group Discussions / Debates / Oral Presentations / Poster Presentations / Technical presentations can also be provided. Course Coordinator can choose any one / two components based on the nature of the course.

ICS VERTICAL II	Cent Acac Cou	tre fi lem	or ic	-KH	RIE	Г	
	* Coim	1	Cate	огу:	PEC	;	
BIOCHEMICAL ENGINEERING	Im	L	Т	Ρ	J	С	
		3	0	0	0	3	

PRE-REQUISITES:

U21CHP08

• 🐃 Nil

COURSE OBJECTIVES:

- To impart the basic concepts of biochemical engineering
- To develop understanding about biochemistry and bioprocess
- To analysis oxygen transfer and power consumption

COURSE OUTCOMES:

Upon completion of the course, the student will be able to

CO1: Fundamentals of microbial growth, batch and continuous culture (Understand)

- CO2: Metabolism and bio-energetics, Synthesis and regulation of biomolecules (Understand)
- CO3: Enzyme kinetics: Simple enzyme kinetics, Enzyme reactor with simple kinetics. Inhibition of enzyme reactions (Understand)
- CO4: Cell kinetics and fermenter design (Analyse)

CO5: Oxygen transfer rate and Power consumption (Analyse)

CO-PO MAPPING:

Correlation levels: 1: Slight (Low)				w)	2: M	oderat	e (Me	dium)		3: Sub	stantia	al (Hi <mark>g</mark> h	1)	
CO5	3	1	1	1	-	-	•	-	-	-	-	-	1	1
CO4	3	1	1	-	-	-	-	-	-	-	-	-	1	1
CO3	3	1	1	-	-	-	-	-	-	-	-	-	1	1
CO2	3	1	1	-	-	-	-	-	-	-	-	-	1	1
CO1	3	2	1	1	•	-	-	-	-	-	-	-	1	1
POs COs	PO1	PO2	PO3	PO4	PO5	P06	P07	PO8	P09	PO10	P011	PO12	PSO1	PSO:

SYLLABUS:

UNIT I MICROBIAL GROWTH AND PURIFIACATION

Introduction to Bioscience – Types of Microorganisms– Structure and function of microbial cells – Fundamentals of microbial growth – Batch and continuous culture

9

Dr. S. Balasubramanian, M.Tech., Ph.D. Professor & Head Department of Chemical Engineering KPR Institute of Engineering & Technology Arasur, Coimbatore - 641 407

UNIT II

UNIT IV

9

9

9

9

Functioning of Cells and Fundamental Molecular Biology - Metabolism and bio-energetics -Photosynthesis - Carbon metabolism - EMP pathway - Synthesis and regulation of biomolecules ENZYME KINETICS AND IMMOBILIZATION UNIT III Enzyme kinetics: Enzyme reactor with simple kinetics - Inhibition of enzyme reactions - Other influences on enzyme activity - Immobilization of enzymes - Industrial applications of enzymes

Cell kinetics and fermenter design: Growth cycle for batch cultivation - Stirred-tank fermenter -Multiple fermenters connected in series - Structured Model.

OXYGEN TRANSFER RATE AND POWER CONSUMPTION UNIT V

METABOLISM AND BIO-ENERGITICS

FERMENTOR DESIGN AND MODEL

Determination of volumetric mass transfer rate of oxygen from air bubbles - Aeration on oxygen transfer rate - Heat transfer and power consumption

Contact Periods:

Lecture:	45 Periods	Tutorial:	- Periods	Practical: - Periods	Project:	- Periods
					Total:	45 Periods

TEXT BOOKS:

- 1. J. E. Bailey and D. F. Ollis., "Biochemical Engineering Fundamentals", 2nd Edition, McGraw Hill, New York, 1986
- 2. Trevan, Boffey, Goulding and Stanbury., "Biotechnology", 1st Edition, Tata McGraw Hill Publishing Co., New Delhi, 1987

REFERENCES:

- 1. H. W. Blanch and D. S. Clark, "Biochemical Engineering", Vol 1, Marcel Dekker, Inc., New York, 1996
- 2. M. L. Shuler and F. Kargi, "Bio Process Engineering: Basic concepts", 2nd Edition., Prentice Hall of India, New Delhi, 2002.
- 3. Missen, R.W., Mims, C.A. and Saviile, B.A, "Introduction to Chemical Engineering and Kinetics", 4th Edition, John Wiley and Sons, New Delhi, 1999
- 4. https://nptel.ac.in/courses/103107086

EVALUATION PATTERN:

		sessments	uous Internal As	Contin	
End Semeste		Assessment II (100 Marks) Total Interna			Assessme (100 Mark
Examinations	Total Internal Assessments	Written Test	*Individual Assignment / Case Study / Seminar / Project / MCQ	Written Test	*Individual Assignment / Case Study / Seminar / Project / MCQ
100	200	60	40	60	40
60	40				
0	100	Total			

*Role Play / Group Discussions / Debates / Oral Presentations / Poster Presentations / Technical presentations can also be provided. Course Coordinator can choose any one / two components based on the nature of the course.

VERTICAL II

			Categ	gory: PEC		
U21CHP09	NANOSCIENCE AND NANOTECHNOLOGY	L	Т	P	J	С
		3	0	0	0	3

PRE-REQUISITES:

Nil

COURSE OBJECTIVES:

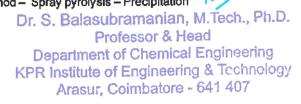
- To develop knowledge on nanomaterials synthesis
- To develop knowledge on characterization of various techniques
- To know the applications of nanomaterials

COURSE OUTCOMES:

Upon completion of the course, the student will be able to

- CO1: Describe the various synthesis materials of nanomaterials (Understand)
- CO2: Apply various techniques for characterization nanomaterials (Understand)
- CO3: Analyze and evaluate the synthesized nanomaterials in agriculture, textile and cosmetics (Analyse)
- CO4: Analyze and evaluate the synthesized nanomaterials in healthcare, food and environment (Analyse)
- CO5: Analyze and evaluate the synthesized nanomaterials in biomedical applications (Analyse)

CO-PO MAPPING:


Correlation levels: 1: Slight (Low)				2: M	oderat	e (Me	dium)		3: Sub	stantia	l (High)		
CO5	1	-	-	-	-	1	2	1	1	-	-	•	2	3
CO4	1	-	-	-	-	1	2	1	1	-	-	-	2	3
CO3	1	-	-	-	-	1	2	1	1	-	-	-	2	3
CO2	1	-	-	-	-	1	2	1	1	-	-	•	2	3
CO1	1	-	-	-	-	1	2	1	1	-	-	-	2	3
POs COs	P01	PO2	PO3	PO4	P05	P06	P07	P08	PO9	PO10	PO11	PO12	PSÖ1	PSO2

SYLLABUS:

UNIT I INTRODUCTION TO NANOMATERIALS

9

Introduction to nanoscience and nanotechnology: Definition of nanomaterials – Properties of nanoscale – Synthesis of nanomaterials: top down and bottom up approaches – Mechanical alloying and mechanical ball milling. Chemical approaches – Sol-gel method – Spray pyrolysis – Precipitation

and electro spraying - Physical approaches - Vapour deposition - CVD and pulsed laser deposition

UNIT II CHARACTERIZATION TECHNIQUES

X-ray diffractometer (XRD) – Four Transform Infrared Spectroscopy (FTIR) – Scanning Electron Microscopy (SEM) – Transmission Electron Microscopy (TEM) – Energy Dispersive Spectroscopy (EDAX) – Atomic Force Microscopy (AFM) and particle size analyzer

UNIT III NANOTECHNOLOGY IN AGRICULTURE AND ENVIRONMENT 9

Nanotechnology in agriculture – Precision forming – Smart delivery system – Insecticides using nanotechnology – Potential of nano-fertilizers – Nanotechnology in environment – Nanomaterials and Nanomembranes in waste water treatment

UNIT IV NANOTECHNOLOGY IN HEALTHCARE AND FOOD INDUSTRY 9

Drug delivery: Nanoscale devices for drug delivery – Micelles for drug delivery, targeting, bioimaging – Nanotechnology in food industry: packaging, food processing, food safety and bio-security – Contaminant detection – Smart packaging

UNIT V NANOTECHNOLOGY IN TEXTILE AND COSMETICS

Nanofibre preparation: Electrospinning – Controlling morphologies of nanofibres – Tissue engineering application – Cosmetics: Formulation of gels, Shampoos, Hair-conditioners (Micellar self-assembly and its manipulation) – Sun-screen dispersions for UV protection using Titanium Oxide – Colour cosmetics

Contact Periods:

Lecture:	45 Periods	Tutorial:	- Periods	Practical: - Periods	Project:	- Periods
					Total:	45 Periods

TEXT BOOKS:

- Guozhong C., "Nanostructures and Nanomaterials: synthesis, properties and applications", Vol 1, Imperial College Press, 2004
- Zhen Guo and Li Tan, "Fundamentals and Applications of Nanomateials", 1st Edition, Artech House, 2009.

REFERENCES:

- 1. M.A. Shah and Tokeer Ahmad, "Principles of Nanoscience and Nanotechnology", 1st Edition, Alpha Science International Ltd, 2010
- Edelstein A S, Cammaratra R C, "Nanomaterials: Synthesis, Properties and Applications", 2nd Edition, CRC Press, 1998.
- Charles P Poole and Frank J Owens, "Introduction to Nanotechnology", 4th Edition, Wiley Interscience, 2003

167

https://nptel.ac.in/courses/103107086

Dr. S. Balasubramanian, M.Tech., Ph.D. Professor & Head Department of Chemical Engineering KPR Institute of Engineering & Technology Arasur, Coimbatore - 641 407

9

EVALUATION PATTERN:

	Contin	uous Internal As	sessments		
Assessme (100 Mark			Assessment II (100 Marks) Total Interna		End Semester
*Individual Assignment / Case Study / Seminar / Project / MCQ	Written Test	*Individual Assignment / Case Study / Seminar / Project / MCQ	Written Test	Total Internal Assessments	Examinations
40	60	40	60	200	100
				40	60
	Total				0

*Role Play / Group Discussions / Debates / Oral Presentations / Poster Presentations / Technical presentations can also be provided. Course Coordinator can choose any one / two components based on the nature of the course.

Ken

VERTICAL II

		Compa	ateg	ory:	PEC	;
U21CHP10	ENZYME ENGINEERING	L	T	P	J	C
		3	0	0	0	3

PRE-REQUISITES:

Nil

COURSE OBJECTIVES:

- To provide students with a basic understanding of classification, nomenclature, mechanism and specificity of enzyme-coenzyme action, extraction, purification and characterization of enzymes
- To introduce and understand the mechanism of enzyme action, protein folding and unfolding and their biological significances
- To demonstrate their basic knowledge and skill on the kinetics, mechanism and function of enzyme action and improve their self-learning and understanding skills on biochemical engineering and promote employability in blotech research areas

COURSE OUTCOMES:

Upon completion of the course, the student will be able to

CO1: Understand the concept of classification and mechanism of enzyme action (Understand)

- **CO2:** Apply the kinetics of multi substrate reactions: mechanisms, ping-pong, random order, compulsory order, steady state kinetics (Analyze)
- CO3: Understand the production and purification of crude enzyme extracts (Understand)

CO4: Understand the physical and chemical technique for enzyme immobilization (Understand)

CO5: Understand the application of enzymes and synthesis of artificial enzymes (Understand)

CO-PO MAPPING:

Correlation levels: 1: Slight (Low)				2: M	oderat	e (Me	dium)		3: Sub	stantia	al (High)		
CO5	3	1	1	1	-	-	-	-	-	-	-	-	1	1
CO4	3	1	1	-	-	-	-	-	-	-	-	-	1	1
CO3	3	1	1	-	-	-	-	-	-	-	-	-	1	1
CO2	3	1	1	-	-	-	-	-	-	-	-	-	1	1
CO1	3	2	1	1	-	•	-	-	-	-	-	-	1	1
POs COs	PO1	PO2	PO3	P04	P05	P06	P07	PO8	P09	PO10	PO11	P012	PSO1	PSO2

Dr. S. Balasubramanian, M.Tech., Ph.D. Professor & Head Department of Chemical Engineering KPR Institute of Engineering & Technology Arasur, Coimbatore - 641 407

SYLLABUS:

UNIT I INTRODUCTION TO ENZYMES

Classification and nomenclature of enzymes – General properties of enzymes – Mechanism of enzyme action – Concept of active site and energetics of enzyme substrate complex formation – Specificity of enzyme action – Principles of catalysis – Collision theory – Transition state theory

UNIT II ENZYME KINETICS

Kinetics of single substrate reactions: Michelis – Menten parameters – Lineweaver Burk plot, Turnover number – Kinetics of multi substrate reactions: mechanisms, ping-pong, random order, compulsory order, steady state kinetics – Types of enzyme inhibition, and Allosteric inhibition – Binding of ligands to proteins: Hill equation and adair equation – Sigmoidal kinetics: Monod Changeux Wyman model

UNIT III PURIFICATION AND CHARACTERIZATION OF ENZYMES

Production and purification of crude enzyme extracts from plants, animals and microbial sources – Methods of characterization of enzymes – Development of enzymatic assays – Production of recombinant enzymes: Serine protease – Lysozyme

UNIT IV ENZYME IMMOBILIZATION

Physical and chemical technique for enzyme immobilization – Adsorption, matrix entrapment, encapsulation, cross-linking, covalent binding – Advantages and disadvantages of immobilized enzymes – Effect of biotic and abiotic factors on enzyme immobilization

UNIT V INDUSTRIAL APPLICATIONS OF ENZYMES

Application of enzymes in food industry, medicine, environmental – Design of enzyme electrodes and their applications – Forensic science – Biotechnological applications of enzymes – Synthesis of artificial enzymes

Contact Periods:

Lecture: 45 Periods Tutorial: - Periods Practical: - Periods Project: - Periods Total: 45 Periods

TEXT BOOKS:

1. Ashok Pandey., "Enzyme Technology", 1st Edition, Springer Science & Business Media ,2004

2. Guo Yong., "Enzyme Engineering", 3rd edition, Alpha Science International Ltd, 2013.

REFERENCES:

- Palmer, T. and Bonner, P, "Enzymes: Biochemistry, Biotechnology and Clinical chemistry", Affiliated East – West Press Pvt. Ltd, New Delhi, India, 2008
- 2. Voet, D. and Voet, G, "Biochemistry", 3rd Edition, John Wiley and Sons, Singapore, 2001. Dr. S. Balasubramanian. M. Tech., Ph.D.

170

Professor & Head Department of Chemical Engineering KPR Institute of Engineering & Technology Arasur, Coimbatore - 641 407

9

9

9

9

- Nicholas, Price, C. and Lewis Stevens, "Fundamentals of Enzymology", 1st Edition, Oxford University Press Publication, New Delhi, India, 2001
- 4. https://nptel.ac.in/courses/103107086

EVALUATION PATTERN:

	Contin	uous Internal As	sessments		-	
Assessme (100 Mari	0.50	Assessme (100 Mar			End Semester	
*Individual Assignment / Case Study / Seminar / Project / MCQ	Written Test	*Individual Assignment / Case Study / Seminar / Project / MCQ	Written Test	Total Internal Assessments	End Semester Examinations	
40	60	40	60	200	100	
				40	60	
	Τα	tal		10	00	

*Role Play / Group Discussions / Debates / Oral Presentations / Poster Presentations / Technical presentations can also be provided. Course Coordinator can choose any one / two components based on the nature of the course

VERTICAL II

			Cate	gory:	PEC	;
U21CHP11	FERMENTATION ENGINEERING	L	Т	Р	J	С
		3	0	0	0	3

PRE-REQUISITES:

• Nil

COURSE OBJECTIVES:

- · To Learn the basics of the various aspects of microbiology and biosystems
- impart experimental design thinking capability in relation to various fermenter configurations modes of operation, growth kinetics and product recovery
- Extrapolate the design thinking skills to bio related processes with chemical engineering background

COURSE OUTCOMES:

Upon completion of the course, the student will be able to

- CO1: Understand the importance of fermentation with reference to industrial microbiology (Understand)
- CO2: Summarize kinetics prevalent in microbial processes (Understand)
- CO3: Understand the process to select and manage microorganisms from natural source to fermentation (Understand)
- CO4: Interpret the acquired knowledge on fermenter configuration for different types of cells and enzymes (Apply)
- CO5: Design of fermentor and the downstream processing of fermentation products. Create innovative applications for fermentation technologies for novel products (Analyse)

Correlation	level:	5:	1: Sli	ght (Lo	w)	2: M	oderat	e (Me	dium)	3: Substantial (High)				
CO5	3	1	1	1	-	-	-	-	1	1	-	1	2	1
CO4	3	1	1	•	-	•	•	1	1	1	-	1	2	1
CO3	3	1	1	-	-		•	1	1	1	•	1	2	1
CO2	3	1	1	-	-	-	-	1	1	1	-	1	2	1
CO1	3	2	1	1	-	-	-	-	1	1	-	1	2	1
POs COs	P O1	PO2	PO3	P04	P05	P06	P07	P08	P09	PO10	PO11	PO12	PSO1	PSO

CO-PO MAPPING:

SYLLABUS:

UNIT I FI	ERMENTATION AND ITS TYPES	9
Development	of fermentation process - Range of processes under fermentation - Types of	of
Fermentation.		
UNIT IL M	NICROBIAL GROWTH KINETICS	9
-	wth – Batch – Continuous and types of fed batch culture – Design and kinetics of the modes of culture.	-
	NDUSTRIAL MICROORGANISM	9
	roorganisms – Isolation, preservation and improvement of strains – Storage method nent strategies	S
	AEDIA FORMULATION	9
Media formula	ation - Energy - Carbon and nitrogen sources - Micro nutrients; oxygen requirement	s
- Other non-	-nutrient and functional components – Effects of media composition on penicilli Media optimization.	
•		9

UNIT V MEDIA STERLIZATION AND DESIGN

Preparation of media and air for pure culture fermentation – Media sterilization – Batch and continuous sterilization processes – Sterilization of fibrous filters and their design – Development of inocula – Processes involving yeast – Bacterial – Fungi – Aseptic inoculation of plant fermentations.

Contact Periods:

Lecture:	45 Periods	Tutorial:	- Periods	Practical: - Periods	Project:	– Periods
					Total:	45 Periods

TEXT BOOKS:

- 1. Stanbury P.F, Whitaker A, Steve H., "Principles of Fermentation Technology", 3rd Edition, Butterworth-Heinemann, USA, 2017
- El-Mansi E., Bryce C.F.A, Arnold L.D., Allman A.R., "Fermentation Microbiology and Biotechnology", 2nd Edition, CRC Press, USA, 2007.

REFERENCES:

- Ashok P, Christian L, Carlos R.S, "Advances in Fermentation Technology", 1st Edition, Asiatech Publishers Inc., India, 2008
- 2. Presscott, D, "Industrial Microbiology", 3rd Edition, CBS Publishers, New Delhi, 1999.
- 3. Rhodes A and Pletcher. D.L, "Principles of Industrial Microbiology", 3rd Edition, Pergamon Press, UK, 1987
- 4. https://nptel.ac.in/courses/103107086

EVALUATION PATTERN:

	Contin	uous Internal As	sessments		
Assessme (100 Mari		Assessme (100 Mar			End Semester
*Individual Assignment / Case Study / Seminar / Project / MCQ	Written Test	*Individual Assignment / Case Study / Seminar / Project / MCQ	Written Test	Total Internal Assessments	Examinations
40	60	40	60	200	100
	· · · · · · · · · · · · · · · · · · ·			40	60
	То	tal		10	0

*Role Play / Group Discussions / Debates / Oral Presentations / Poster Presentations / Technical presentations can also be provided. Course Coordinator can choose any one / two components based on the nature of the course

VERTICAL II

	111D	11010	Cate	jory:	PEC	2
U21CHP12	DRUGS AND PHARMACEUTICAL TECHNOLOGY	L	Т	P	J	c
	· · · · · · · · · · · · · · · · · · ·	3	0	0	Ű	3

PRE-REQUISITES:

Nil

COURSE OBJECTIVES:

- To provide the basic knowledge on functional group identification, chemical bonding with their mechanism
- To provide the basic knowledge of principles involved in the identification and estimation of pharmaceutical substances.
- To understand the properties and principles of medicinal agents that originates from organic and inorganic sources and their application in pharmaceutical industry

COURSE OUTCOMES:

Upon completion of the course, the student will be able to

- **CO1:** Acquire basic knowledge of preformulation and formulation of drugs, pharmaceutical unit operations and manufacturing, packaging and quality control of pharmaceutical dosage forms (Understand)
- **CO2:** Acquire a knowledge on pharmaceutical unit operations and manufacturing, packaging and quality control of pharmaceutical dosage forms (Understand)
- **CO3:** Trained to conceptualize, design, build up, maintain and operate various industrial processes and machineries involved in the process (Apply)
- CO4: Understand and apply the various processing and manufacturing techniques (Apply)

CO5: Formulate a pure drug substance into a dosage form (Apply)

CO-PO MAPPING:

Correlation	n level:	s:	1: Sli	ght (Lo	w)	2: M	oderat	e (Me	dium)	3: Substantial (High)				
CO5	3	1	1	1	-	-	-	-	1	1	-	1	2	1
CO4	3	1	1	-	•	-	-	1	1	1	-	1	2	1,
CO3	3	1	1	-	-	-	-	1	1	1	-	1	2	1
CO2	3	1	1	-	-	-	-	1	1	1	-	1	2	1
CO1	3	2	1	1	-	-	-	•	1	1	-	1	2	1
POs COs	P01	PO2	PO3	PO4	PO5	P06	P07	PO8	P09	PO10	P011	PO12	PSO1	PSO:

9

9

9

9

9

SYLLABUS:

UNIT I PHARMACEUTICALS, BIOLOGICS AND BIOPHARMACEUTICALS

Introduction to pharmaceutical products – Biopharmaceuticals and pharmaceutical biotechnology – Biopharmaceuticals: current status and future prospects – Pharmaceuticals of animal origin – Pharmaceutical substances of plant origin – Pharmaceutical substances of microbial origin – Drug discovery.

UNIT II DRUG CHARACTERISTICS AND KINETICS

Diffusion and dissolution – Kinetics and drug stability – Viscosity and rheology – Polymer science and applications.

UNIT III THE DRUG MANUFACTURING PROCESS

International pharmacopoeia – The manufacturing facility – Cleaning – Decontamination and sanitation (CDS) – Documentation – Specifications – Records – Additional production systems: yeasts – Fungal production systems – Transgenic animals – Transgenic plants – Immunological approaches to detection of contaminants – Pyrogen detection – Validation studies

UNIT IV BLOOD PRODUCTS AND THERAPEUTIC ENZYMES

Platelets and red blood cells – Blood substitutes – Tissue plasminogen activator (tPA) – Urokinase – Staphylokinase – Antibodies – Vaccines and adjuvants – Therapeutic application of monoclonal antibodies – Traditional vaccine preparations – Toxoids – Antigen-based and other vaccine preparations – Oil-based emulsion adjuvant.

UNIT V BIOPHARMACEUTICALS

Various categories of therapeutics like vitamins – Laxatives – Analgesics – Contraceptives – antibiotics – Ormones and biologicals.

Contact Periods:

Lecture:	45 Periods	Tutorial:	- Periods	Practical: – Periods	Project:	- Periods
					Total:	45 Periods

TEXT BOOKS:

- Alfred N.Martin., "Physical Chemical and Biopharmaceutical Principles in the Pharmaceutical Sciences", 6th Edition, Lippincott Williams & Wilkins, 2006
- David B. Troy., "Remington: The Science and Practice of Pharmacy", 1st Edition, Lippincott Williams & Wilkins, 1984

REFERENCES:

- Sidney James Carter, "Cooper and Gunn's Tutorial Pharmacy", 1st Edition, CBS Publishers & Distributors, 1986
- 2. Gareth Thomas, "Medicinal Chemistry. An introduction", 1st Edition, John Wiley, 2000anian, M. Tech., Ph.D.

Professor & Head Department of Chemical Engineering KPR Institute of Engineering & Technology Arasur, Coimbatore - 641 407

- 3. Katzung B.G, "Basic and Clinical Pharmacology", Prentice Hall of International, 1995
- 4. https://nptel.ac.in/courses/103107086

EVALUATION PATTERN:

	Contin	uous Internal As	sessments		
Assessme (100 Mark		Assessme (100 Mar			End Semester
*Individual Assignment / Case Study / Seminar / Project / MCQ	Written Test	*Individual Assignment / Case Study / Seminar / Project / MCQ	Written Test	Total Internal Assessments	Examinations
40	60	40	60	200	100
	4			40	60
	Το	tal		10	0

*Role Play / Group Discussions / Debates / Oral Presentations / Poster Presentations / Technical presentations can also be provided. Course Coordinator can choose any one / two components based on the nature of the cours

XXV Dr. S. Balasubramanian, M.Tech., Fn.U. Professor & Head Department of Chemical Engineering KPR Institute of Engineering & Technology Arasur, Coimbatore - 641 407

VERTICAL III

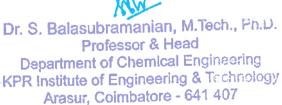
			Cate	gory	PEC	:
U21CHP13	CORROSION ENGINEERING	L	Category: L T P 3 0 0	J	С	
		3	0	0	0	3

PRE-REQUISITES:

Nil

COURSE OBJECTIVES:

- Understanding of basic concepts of Corrosion, Corrosion in different materials
- Corrosion Electrochemistry, Corrosion Thermodynamics, Kinetics and Applications.
- Corrosion evaluation and corrosion in steel materials, Methods and Materials to prevent the Corrosion


COURSE OUTCOMES:

Upon completion of the course, the student will be able to

- CO1: Solve problems involving various types of corrosion (Apply)
- CO2: Select corrosion resistant materials for a given application (Understand)
- CO3: Able to select technique for corrosion prevention and minimize corrosion (Apply)
- **CO4:** Students shall understand how to prevent the corrosion and able to Estimate the rate of corrosion (Apply)
- **CO5:** Selection of materials for corrosion prevention, how to alter the environment for minimal rate of corrosion, different protection techniques and coating to prevent corrosion (Analyze)

Correlation	n level:	5:	1: Sli	ght (Lo	w)	2: M	oderat	e (Me	dium)	3: Substantial (High))
CO5	3	-	2	2	2	-	-	-	-	-	-	-	1	1
CO4	3		2	2	2	-	-	-	-	-	-	-	1	1
CO3	3	-	2	2	2	2	-	-	-	-	•	-	1	1
CO2	3	2	-	-	2	2	-	-	-	-	-	-	1	1
CO1	3	2	-	-	2	2	-	-	-	-	-	-	1	1
POs COs	P01	PO2	PO3	PO4	PO5	P06	P07	P08	PO9	PO10	P011	PO12	PSO1	PSO.

CO-PO MAPPING:

SYLLABUS:

UNIT I INTRODUCTION TO CORROSION

Introduction and Scope: Corrosion definition – Wet and dry corrosion- mechanisms – Electrochemical principles and aspects of corrosion – Faradays laws – Specific conduction specific resistance – Transport number. Mobility – Various forms of corrosion.

UNIT II THERMODYNAMIC AND KINETICS

Thermodynamic aspects of corrosion equilibrium potential – Nernst equation for electrode potential – EMF series – Over voltage – Application of Nernst equation to corrosion reactions – Calculation of Corrosion Rates – Corrosion rate expression.

UNIT III CORROSION AND ITS TYPES

Polarization and Corrosion potentials – Reference electrodes for corrosion measurements – Types of polarization – Concentration – Activation and resistance polarizations – Tafel equation – Tafel constant – Evans diagrams – Anodic control– cathodic control – Mixed control: Fourbaix diagram for Fe-H2O system – Galvanic corrosion – Uniform attack – Pitting corrosion – Dezincification– cavitation erosion – Fretting corrosion – Inter-granular and stress corrosion cracking – Some remedial measures.

UNIT IV CORROSION MECHANISM AND TESTING

High temperature oxidation – Pilling bed-worth ratio – Mechanisms of oxidation – Corrosion testing Procedures evaluation – Corrosion of iron and steel in aqueous media – Effect of velocity– temperature and composition of media.

UNIT V PREVENTION OF CORROSION

Prevention techniques – Modification of the material – Alloying – Appropriate surface or core treatment – Chemical and mechanical methods of surface treatment – Coatings – Metallic– Non-metallic linings – Cathodic protection – Passivity and anodic protection.

Contact Periods:

Lecture:	45 Periods	Tutorial:	- Periods	Practical: - Periods	Project:	- Periods
					Total:	45 Periods

TEXT BOOKS:

- 1. Mars Fontana, "Corrosion Engineering", 3rd Edition, McGraw-Hill Publication, 2003
- 2. Uhling H H and Revie R W, "Corrosion & Corrosion Control", 1st Edition, John Wiley & sons, 2001

REFERENCES:

1. Plerre Roberge, "Handbook of Corrosion Engineering", 1st Edition, McGraw-Hill Publication, 2012

179

Dr. S. Balasubramanian, M.Tech., Ph.D. Professor & Head Department of Chemical Engineering KPR Institute of Engineering & Technology Aresur, Coimbatore - 641 407

9

9

9

9

EVALUATION PATTERN:

	Contin	uous Internal As	sessmeinta					
Assessme (100 Mari		Assessment II (100 Marks)			End Semester			
*Individual Assignment / Case Study / Seminar / Project / MCQ	Written Test	*Individual Assignment / Case Study / Seminar / Project / MCQ	Written Test	Total Internal Assessments	Examinations			
40	60	40	60	200	100			
				40	40 60			
	То	tal	1	10	0			

*Role Play / Group Discussions / Debates / Oral Presentations / Poster Presentations / Technical presentations can also be provided. Course Coordinator can choose any one / two components based on the nature of the course.

Kely

CBCS VERTICAL III	C A	entr Cade	re foi emic	and	Learn Bay	2 ET	
	Coi	Dhat	Cate	gory:	PEC		
PETROLEUM EQUIPMENT DESIGN		-L	T	P	J	C	
		3	0	0	0	3	

PRE-REQUISITES:

U21CHP14

Nil

COURSE OBJECTIVES:

To introduce basic concepts, and design calculations piping system

a.

- To familiarize basic knowledge on design of storage Tanks
- To enumerate different factors considered in design pressure vessels

COURSE OUTCOMES:

Upon completion of the course, the student will be able to

CO1: Estimate pressure loss in pipeline networks (Understand)

CO2 : Select proper pipe and pipe fitting based on pressure loss in pipeline (Understand)

CO3: Analyse various factors effect selection of storage vessels and suggest thickens and dimensional requirement of storage vessels (Analyze)

CO4: Design pressure vessels based on process and external conditions (Apply)

CO5: Analyse various factors to Analyse be considered in the design of reacting vessels (Analyze)

CO-PO MAPPING:

Correlation	n level	s:	1: Sli	ght (Lo	w)	2: M	oderat	e (Me	dium)		3: Sub	stantia	al (High	1)
CO5	2	2		-	-	-	-	-	•	-	-	-	1	1
CO4	2	2	-	-	-	-	-	-	•	-	-	-	1	1
CO3	2	2	-	•	-	-	-	-	-	-	-	-	1	1
CO2	2	2	-	-	•	-	-	-	-	-	-	•	1	1
CO1	2	2	-	-	-	-	-	-	•	-	-	-	1	1
POs COs	PO1	P02	PO3	P04	PO5	P06	P07	P08	PO9	PO10	P011	PO12	PSO1	PSO

Syllabus

UNIT I FUNDAMENTALS OF PIPING

9

Friction factor, pressure drop for flow of non-compressible and compressible fluids – (Newtonian Fluids) – Pipe sizing– Pipes and Tube Standards – Types of valve fittings and Valves – Selection of

181

fittings – Economic velocity of liquid and gas handling. Pipe line networks and their analysis for flow in branches – Pipe supports – Pressure drop calculations for Non-Newtonian fluids.

UNIT II STORAGE TANKS

Study of various types of storage vessels and applications – Atmospheric vessels – Vessels for storing volatile and non-volatile liquids – Storage of gases – Losses in storage vessels – Various types of roofs used for storage vessels –. Vessel supports – Introduction and classification of supports – Design of skirt supports considering stresses due to dead weight – Wind load – Seismic load.

UNIT III PRESSURE VESSELS

Stresses due to static loads – Thermal stresses – Stresses caused by bending and wind loads – Thin and thick wall cylinders under internal and external pressure – Thin and thick-walled spherical shells under internal and external pressure – Prediction of failure of vessels by maximum normal stress theory and maximum strain theory

UNIT IV REACTOR VESSELS

Reaction vessels: Classification – Heating systems – Design of vessels – Study and design of various types of jackets like plain – Half coil – Channel – Limpet oil – Study and design of internal coll reaction vessels – Heat transfer coefficients in coils

UNIT V AGITATORS

Agitators: a study of various types of agitators – Their selection – Application – Baffling – Agitator – Shaft diameter calculations – Twisting moment – Equivalent bending moment – Power requirement calculations for agitation systems.

Contact Periods:

Lecture:	45 Periods	Tutorial: - Periods	Practical: - Periods	Project	- Periods
				Total	45 Periods

TEXT BOOKS:

- 1. M V Joshi & V V Mahajani, "Process Equipment Design", 5th Edition, Trinity Press, 2017
- Ernest E. Ludwig, "Applied Process Design for Chemical and Petrochemical Plants", 3rd Edition, Gulf Professional Publishing, 2001.

REFERENCES:

- 1. S B Thakore and B I Bhatt, "Introduction to Process Engineering and Design", 1st Edition, Tata McGraw Hill, 2007
- 2. R K Sinnott, "Coulson & Richardson's Chemical Engineering", Vol. 6, CBSPD, 2006

9

9

9

3. L.E. Brownell and E. Young, "Process equipment design", 1st Edition, John Wiley, New York, 1963

	Contin	uous Internal As	sessments		
Assessme (100 Mark		Assessment II (100 Mark s)			End Semester
*Individual Assignment / Case Study / Seminar / Mini Project / MCQ	Written Test	*Individual Assignment / Case Study / Seminar / Mini Project / MCQ	Written Test	Total Internal Assessments	Examinations
40	60	40	60	200	100
				40	60
Total 100					0

EVALUATION PATTERN:

*Role Play / Group Discussions / Debates / Oral Presentations / Poster Presentations / Technical presentations can also be provided. Course coordinator can choose any one / two components based on the nature of the course.

VERTICAL III

			Cate	gory:	: PEQ	÷	
U21CHP15	OIL AND GAS ENGINEERING	L	Т	P	J	С	
		3	0	0	0	3	

PRE-REQUISITES:

Nil

COURSE OBJECTIVES:

- Various sources of oil and gas nationally and globally.
- To study the various exploration techniques of Oil and Gas.
- Understanding the Storage and Separation Mechanism of Oil and Gas and Transportation.

COURSE OUTCOMES:

Upon completion of the course, the student will be able to

CO1: The students develop the knowledge base about the development of oil and gas fields and technological innovations in exploration and drilling etc (Remember)

CO2: The students understand the different drilling methodologies for crude oil production (Apply)

CO3: The students understand the separation methodologies oil and gas (Understand)

CO4: The students understand the storage mechanism of crude oil and gas (Understand)

CO5: Different method of Transportation of crude oil and gas (Apply)

CO2 CO3 CO4 CO5	3 2 2 2 2	2 3 2 2	-	-	-	-	-	-	-	-	-	-	1 1 1	1 1 1 1
CO3	2	3	_	-	-	-	-	_	-	-	-	-	1 1 1	1 1 1
			_	-	-		-	_			-	-	1	1
CO2	3	2	-	-	-	-	-	-	-	-	-	-	1	1
CO1	3	2	-	-	-	-	-	-	-	-	÷	-	1	1
POs COs	P01	PO2	PO3	PO4	PO5	P06	P07	PO8	PO9	PO10	PO11	PO12	PS01	PSO

CO-PO MAPPING:

UNIT I RESERVOIR

Petroleum Reserve Estimation Reserve categories – Proven and unproven reserve – Type of reserve – Prognostic reserves – Commercial reserves – Balance reserve – Reserve estimation: Volumetric method – Material balance method – Decline curve analysis – Numerical simulation techniques– Monte Carlo approach etc.

Dr. S. Balasubramanian, M.Tech., Ph.D. Professor & Head Department of Chemical Engineering KPR Institute of Engineering & Technology Arasur, Coimbatore - 641 407

UNIT II EXPLORATION

Drilling Introduction to on-shore and offshore drilling operations – Onshore drilling techniques– Cable tool drilling – Rotary drilling – Vertical drilling – Directional drilling – Horizontal drilling– Offshore drilling rigs – Drilling accessories components – Drilling fluid circulation system – Functions of drilling fluids – Mud parameters

UNIT III OIL AND GAS SEPARATION

Oil and Gas separators: Principal of separation– Types of separators – Their description – Various control and vessel internals – Oil and gas gravitational separator – Vertical two and three phase separator – Horizontal three phase separator etc.

UNIT IV STORAGE OF PETROLEUM PRODUCTS

Classification of inflammable liquids – Classification of storage tank – Floating roof tank – Fixed roof tank – Semi buried tank – Import/export loss – Breathing losses – Hazards and non-hazards area – and underground storage tank etc.

UNIT V TRANSPORTATION

Transportation of oil and natural gas by rai I– Road and pipeline – Various type of pipelines – Pipe line automation – Lease Automatic Custody Transfer units – SCADA – Batch transport of petroleum products – Multiproduct pipelines – Product handling – Pumping cycle – Interface – Problems in waxy crude – Role of flow behaviour etc.

Contact Periods:

Lecture:	45 Periods	Tutorial: Periods	Practical: - Periods	Project	- Periods
				Total	45 Periods

TEXT BOOKS:

- 1. Andrew Palmer, "Introduction to Petroleum Exploration and Engineering", 1st Edition, World Scientific, 2017.
- 2. John R Fanchi, "Introduction to Petroleum Engineering", 1st Edition, John Wiley, 2016.

REFERENCES:

1. J. H. Gary, G. E. Handwork and M. J. Kaiser, "Petroleum Refining: Technology and Economics", 5th Edition, CPR Press, Taylor and Francis Group,200.

185

2. Conaway C.F., "The Petroleum Industry: A Non- Technical Gulde", 1st Edition, Penn Well, 1999

Dr. S. Balasubramanian, M. tech., Hn.U. Professor & Head Department of Chemical Engineering KPR Institute of Engineering & Technology Arasur, Coimbatore - 641 407

9

9

9

	Contin	uous Internal As	sessments					
Assessme (100 Mark	6.253		Assessment II (100 Marks)		End Semester			
*Individual Assignment / Case Study / Seminar / Mini Project / MCQ	Written Test	*Individual Assignment / Case Study / Seminar / Mini Project / MCQ	Written Test	Total Internal Assessments	Examinations			
40	60	40	60	200	100			
	_			40	60			
	Τα	tal	10	0				

EVALUATION PATTERN:

*Role Play / Group Discussions / Debates / Oral Presentations / Poster Presentations / Technical presentations can also be provided. Course coordinator can choose any one / two components based on the nature of the course.

VERTICAL III

1		m	Cate	gory:	PEC	;	
U21CHP16	SUPPLY CHAIN MANAGEMENT	L	Т	T P J 0 0 0			
		3	0	0	0	3	

PRE-REQUISITES:

- Nil
- **COURSE OBJECTIVES:**
- To understand about the product Life cycle and factors affecting the supply chain.
- To impart knowledge in Risk management in source freight, transportation networks.
- To understand about the network design in Supply chain Management and Risk Management in transportation.

COURSE OUTCOMES:

Upon completion of the course, the student will be able to

- **CO1:** Outline the manufacturing and product life cycle management process involved in a product (Understand)
- CO2: Formulate the forecasting methods and inventory modelling (Understand)
- CO3: Estimate the right procurement and logistics strategy based on the supply chain and product criterion requirements (Analyze)
- CO4: Design and analyze the right supply chain structure for the product along with distribution network (Apply)
- CO5: Produce the supply chain network diagram incorporating supply chain strategy and competitive strategies involving material and information flow lines (Understand)

CO-PO MAPPING:

Correlation	n level:	s:	1: Sli	ght (Lo	w)	2: M	oderat	e (Me	dium)		3: Sub	stantia	l (High)
CO5	2	2	-	-	-	2	-	-	-	-	-	-	1	1
CO4	2	2	-	-	-	2		-	•	-	-	-	1	1
CO3	2	2	-	-	-	2	-	-	-	•	-	-	1	1
CO2	3	-	-		-	2		-	-	-	-	•	1	1
CO1	3	-	-	-	-	2	-	-	-	-	-	-	1	1
POs COs	P01	PO2	P03	PO4	PO5	P06	P07	PO8	P09	PO10	P011	PO12	PSO1	PSO2

SYLLABUS:

UNIT I INTRODUCTION TO SUPPLY CHAIN

9

Supply Chain - Objectives & Stages - Power of SCM - Process views of a supply chain - Strategic

187

KPRIET Learn Beyond

planning – Achieving a strategic fit in a supply chain and factors affecting the strategic fit – Value chain – Supply chain flow lines – Understanding a product – Product life cycle

UNIT II SUPPLY CHAIN PROCESS

Forecasting in supply chain – Forecast error distribution order quantity and reorder point characteristics & components of forecasting – Time series methods of forecasting – Demand Management in MPC – MTS – ATO – MTO – Inventory – Role of cycle inventory – Economies of scale to exploit fixed costs

UNIT III PRODUCT PROCUREMENT & TRANSPORTATION

Procurement process – EOQ – Sourcing in a supply chain – Deciding factors for in-house or outsourcing – Supplier selection – Auctions and negotiations – Risk management in sourcing Freight management – Transportation networks – Milk run – Cross Docking

UNIT IV DESIGNING A SUPPLY CHAIN

Supply chain drivers – Supply chain performance measures – SCOR Model – Network design in a supply chain – Factors influencing design – Framework for network design network – Models for facility location and capacity allocation – Uncertainty in network

UNIT V INFORMATION TECHNOLOGY IN SUPPLY CHAIN

Lean Supply Chain – Agile supply chain – Dynamic supply chain design – Impact of technology on SCM – Key trends in SCM – IT in supply chain coordination and design – MRP– ERP– CRM– ISCM – Performance metrics.

Contact Periods:

Lecture:	45 Periods	Tutorial: - Periods	Practical: - Periods	Project:	- Periods
				Total:	45 Periods

TEXT BOOKS:

1. Ayers J., "Hand Book of Supply Chain Management", 1* Edition, The St. Lencie Press/ APICS Series on Resource Management, 2000.

REFERENCES:

- Burt N.D., Dobler. W.D. and Starling L.S., "World Class Supply Chain Management, The Key to Supply Chain Management", 1st Edition, Tata McGraw Hill Publishing Company Limited, 2005
- 2.Chopra S., Meindl P. and Kalra, D.V., "Supply Chain Management, Strategy, Planning and Operation", 1st Edition, Pearson Education, 2008
- 3. Monczka R., Trent R. and Handfield R., "Purchasing and Supply Chain Management", 3rd Edition, Thompson Learning, 2007

Dr. S. Balasubramanian, M.Tech., Ph.D. Professor & Head Department of Chemical Engineering KPR Institute of Engineering & Technology Arasur, Coimbatore - 641 407

9

9

EVALUATION PATTERN:

	Contin	uous Internal As	sessments		
Assessme (100 Mark				1	End Semester
*Individual Assignment / Case Study / Seminar / Mini Project / MCQ	Written Test	*Individual Assignment / Case Study / Seminar / Mini Project / MCQ	*Individual Assignment / Case Study / Seminar / Mini Project / MCQ 40 60 200 40 40	Total Internal Assessments	Evententient
40	60	40	60	200	100
				40	60
	То	tal		10	0

*Role Play / Group Discussions / Debates / Oral Presentations / Poster Presentations / Technical presentations can also be provided. Course coordinator can choose any one / two components based on the nature of the course.

VERTICAL III

			Cate	gory	: PEC	>
U21CHP17	PETROLEUM REFINING AND PETROCHEMICALS	L	Т	P	J	С
		3	0	0	0	3

PRE-REQUISITES:

Nil

COURSE OBJECTIVES:

- Introduction of various testing methods of crude oil and its products, and refining of crude oil
- Understanding the Mechanism of different Cracking operation
- Different treatment technology for sulphur removal and Manufacture of various petrochemicals

COURSE OUTCOMES:

Upon completion of the course, the student will be able to

- **CO1:** Have a knowledge on the past, present and future of petroleum industry nationally and globally and study the nature of crude oil components and understand the various process of refining (Understand)
- CO2: Able to select process technique for corrosion prevention and minimize corrosion (Understand)
- **CO3:** Understand the process technology involved in production and storage of LPG and LNG from its raw material Acquire knowledge of process involved in converting crude oil to various products (Apply)
- **CO4:** Know the principles and technologies involved in Fluid catalytic cracking, hydro desulphurization and other processes in cracking of crude oil and gas (Analyze)
- CO5: Sketch the flow-sheets for the manufacture of various industrially important petrochemicals (Apply)

POs COs	P01	PO2	PO3	P04	PO5	P06	P07	PO8	PO9	PO10	P011	PO12	PSO1	PSO2
CO1	2	2	-	-	-		-	-	-	-	-	-	1	1
CO2	2	2	-		-	-	-	-	-	-	-	-	1	1
CO3	2	2	-	-	-	-	-	•	-	•	-	-	1	1
CO4	2	2	-	-	-	-		-	-	•	-	-	1 *	1
CO5	2	2	-	-	-	-	-	-	-	-	-	-	1	1
Correlation levels: 1: Slight (Low)					2: M	oderat	e (Me	dium)		3: Sub	stantia	I (High)	

CO-PO MAPPING:

SYLLABUS:

UNIT I CLASSIFICATION AND TESTING

Indian petroleum industry --- Prospects and future-- Exploration -- Composition of crude and classification of crude oil -- Evaluation of crude oil and testing of petroleum products -- Refining of petroleum -- Atmospheric and vacuum distillation

UNIT II CRACKING PROCESS

Thermal cracking – Visbreaking – Coking – Catalytic cracking (FCC) – Hydrocracking – Cracking of naphtha and gas for the production of ethylene – Propylene isobutylene and butadiene

UNIT III SWEETENING PROCESS

Treatment techniques for removal of sulphur compounds to improve performance – Production and treatment of LPG – LNG technology – Sweetening operations for gases including merox– ethanolamine – Copper chloride.– Storage and stability

UNIT IV HYDRO-TREATMENT AND ASPHALT TECHNOLOGY

Product treatment processes – Various solvent treatment processes – De-waxing–Clay treatment– hydro treatment and Hydro fining – Asphalt treatment process – Air blowing of bitumen

UNIT V PETROCHEMICALS

Isomerization – Alkylation and polymerization – Process types – Chemistry – Commercial processes – Catalysts – Production of petrochemicals like dimethyl terephathalate (DMT) – Ethylene glycol – Synthetic glycerine – Linear alkyl benzene (LAB) – Acrylonitrile – Methyl methacrylate (MMA)

Contact Periods:

Lecture:	45 Periods	Tutorial: - Periods	Practical: - Periods	Project:	- Periods
				Total:	45 Periods

TEXT BOOKS:

- 1. Nelson, W.L., " Petroleum refinery engineering", 4th Edition, Mcgraw Hill, New York, 1995
- 2. Bhaskara Rao, B.K., "Modern petroleum refining processes", 6th Edition, Oxford and IBH publishing company, New Delhi, 2018

REFERENCES:

- 1. Ram Prasad, "Petroleum Refining Technology", 1st Edition, Khanna publishers, 2010
- C.S. Hsu and P.R. Robinson, "Practical advances in petroleum processing", Vol. 1 & 2, Springer publications, 2006.

191

3. G.N. Sarkar, "Advanced Petroleum Refining", Khanna publishers, 2008

Dr. S. Balasubramanian, M.Tech., Ph.D. Professor & Head Department of Chemical Engineering KPR Institute of Engineering & Technology Arasur, Coimbatore - 641 407

9

9

9

9

EVALUATION PATTERN:

	Contin	uous Internal As	sessments		
Assessme (100 Mark		Assessme (100 Mar			End Semester
*Individual Assignment / Case Study / Seminar / Mini Project / MCQ	Written Test	*Individual Assignment / Case Study / Seminar / Mini Project / MCQ	arks) Total Internal Assessments Written ii Test		Examinations
40	60	40	60	200	100
				40	60
	То	tal		10	0

*Role Play / Group Discussions / Debates / Oral Presentations / Poster Presentations / Technical presentations can also be provided. Course coordinator can choose any one / two components based on the nature of the course.

de

VERTICAL III

		1	Cate	JOLA	PEC	;
U21CHP18	PIPING AND INSTRUMENTATION IN CHEMICAL PLANTS	L	Τ	Ρ	J	C
	PLANIS	3	0	0	0	3

PRE-REQUISITES:

Nil

COURSE OBJECTIVES:

- To impart knowledge on piping technology and instrumentation on pipelines
- To Introduce the concept of Laplace, Transform for solving differential equations
- To develop dynamic modeling of physical processes

COURSE OUTCOMES:

Upon completion of the course, the student will be able to

CO1: Understand fundamentals of piping engineering (Understand)

CO2: Apply the concepts of pipe hydraulics and sizing (Apply)

CO3: Able to develop the plot plan for different types of fluid storage (Understand)

CO4: Analyze the piping support based on requirement and its calculation (Analyze)

CO5: Understand the process flow diagram and instrumentation (Understand)

CO-PO MAPPING:

Correlation	level:	s:	1: Slig	ght (Lo	ow)	2: M	oderat	e (Me	dium)		3: Sub	stantia	l (High)
CO5	1	2	1	-	-	-	-	-	-	-	-		1	1
CO4	1	2	1	-	-	-	-	-	-	-	-	-	1	1
CO3	1	2	1	-	-	•	-	-	-	-	-	-	1	1
CO2	1	2	1	-	-	-	-	-	-	-	-	•	1	1
CO1	1	2	1	-	-	-	-	-	-	-	-	-	1	1
POs COs	P01	PO2	PO3	PO4	P05	PO6	P07	P08	P09	PO10	PO11	PO12	PSO1	PSC

Syllabus

UNIT I FUNDAMENTALS OF PIPING ENGINEERING

9

9

Definitions Piping Components their introduction – Applications – Piping MOC – Budget Codes and Standards – Fabrication and Installations of piping

UNIT II PIPE HYDRAULICS AND SIZING

Pipe sizing based on velocity and pressure drop consideration cost – Least annual cost approach, pipe drawing basics – Development of piping general arrangement drawing – Dimensions and drawing of piping

193

UNIT III PLOT PLAN

Development of plot plan for different types of fluid storage – Equipment layout – Process piping layout – Utility piping layout – Stress analysis - Different types of stresses and its impact on piping, methods of calculation – Dynamic analysis and flexibility analysis

UNIT IV PIPING SUPPORT

Different types of support based on requirement and its calculation

UNIT V INSTRUMENTATION

Final Control Elements; Measuring devices -- Instrumentation symbols introduction to process flow diagram (PFD) and piping & instrumentation diagram (P&ID)

Contact Periods:

Lecture: 45 Periods	Tutorial: - Periods	Practical: - Periods	Project: - Periods
			Total: 45 Periods

TEXT BOOKS:

- 1. M.L. Nayyar, P.E., "Piping Handbook", 6th Edition, Mc Graw-Hill, 1996
- 2. Johan J McKetta, "Piping Design Handbook", Vol.1, CRC Press, 1992.

REFERENCES:

- 1. Luyben, W. L.," Process Modeling Simulation and Control for Chemical Engineers", 1st Edition, McGraw Hill, 1990
- 2. Marlin, T. E., " Process Control ", 2nd Edition, McGraw Hill, New York, 2000
- Smith, C. A. and Corripio, A. B., "Principles and Practice of Automatic Process Control", 2nd Edition, John Wiley, New York, 1997

EVALUATION PATTERN:

	Contin	uous Internal As	sessments		
Assessme (100 Mark		Assessme (100 Mar			End Semester
*Individual Assignment / Case Study / Seminar / Mini Project / MCQ	Written Test	*Individual Assignment / Written Case Study / Writ		Total Internal Assessments	End Semester Examinations
40	60	40	60	200	100
	_			40	60
	То	tal	10	0	

*Role Play / Group Discussions / Debates / Oral Presentations / Poster Presentations / Technical presentations can also be provided. Course coordinator can choose any one / two components based on the nature of the course.

g

9

9

VERTICAL IV

	A FULLAGE IA	Soin	-	a *)	/	
		1	Cate	gory:	PEC	;
U21CHP19	GENERAL ASPECTS OF ENERGY MANUFACTURING AND ENERGY AUDIT	L	т	Р	J	С
	AND ENERGY AUDIT	3	0	0	0	3

PRE-REQUISITES:

- Nil
- COURSE OBJECTIVES:
- To Understand the need for energy management and audit and its importance in optimizing energy efficiency and minimizing energy costs.
- To Develop an understanding of energy management tools, techniques, and instruments to assess and evaluate energy performance and identify opportunities for improvement.
- To understand the financial and project management aspects related to energy efficiency, such as investment appraisal, criteria, financial analysis techniques, and the role of ESCOs.

COURSE OUTCOMES:

Upon completion of the course, the student will be able to

- CO1: Understand the global and Indian energy scenario and its impact on the environment and climate change (Understand)
- CO2: Understand the Energy Conservation Act, Electricity Act, 2003, and National Action Plan on Climate Change (NAPCC) (Understand)
- CO3: Understand the principles and techniques of energy management and audit, including benchmarking, energy performance, and monitoring and targeting (Understand)
- CO4: Understand to manage energy efficiently, including assessing energy profiles, establishing baselines, planning, implementation, evaluation, and recognizing (Understand)
- **CO5:** Understand the financial and project management aspects of energy efficiency, including investment appraisal, financial analysis techniques, and the role of ESCOs in energy performance contracting (Understand)

CO-PO MAPPING:

Correlation levels: 1: Slight (Low) 2: Moderate (Medium)								3: Sub	stantia	al (High)			
CO5	2	2	2	1	-	2	2	2	2	2	2	2	2	2
CO4	2	2	2	1	-	2	2	2	2	2	2	2	2	2
CO3	2	2	2	1	-	2	2	2	2	2	2	2	2	2
CO2	2	2	2	1	-	2	2	2	2	2	2	2	2	2
CO1	2	2	2	1	•	2	2	2	2	2	2	2	2	2
POs COs	PO1	PO2	PO3	PÓ4	PO5	P06	P07	PO8	P09	PO10	PO11	PO12	PSO1	PSO

SYLLABUS:

ENERGY SCENARIO AND ENERGY CONSERVATION ACTS UNIT I

Primary and secondary, Renewable and Non-Renewable, Commercial and Non-commercial energy - Global and Indian energy scenario - Integrated energy policy - Energy intensity on Purchasing Power Parity (PPP) - Energy conservation Act - Electricity Act, 2003 - National Action Plan on Climate Change (NAPCC)

ENERGY MANAGEMENT AND AUDIT UNIT II

Need for Energy Management and Audit - Types - Understanding energy costs - Instruments and metering for energy audit - Benchmarking - Energy performance - Matching energy usage to requirement - Maximizing system efficiencies. Bureau of energy efficiency Regulations, 2008 -Energy Analysis and Sankey diagram

UNIT III ENERGY MANAGEMENT

Top management commitment and support - Assessing energy profile and establishing baseline -Planning, implementation - Evaluation and Recognizing - Management tools for effective implementation - Monitoring and targeting - Energy Management Information System (EMIS).

UNIT IV FINANCIAL AND PROJECT MANAGEMENT

Investment Need - Appraisal and criteria - Financial analysis techniques - Energy performance contracting and Role of ESCOs - Developing a typical ESCO contract - Case study - Project Development Cycle (PDC).

ENERGY EFFICIENCY AND CLIMATE CHANGE UNIT V

Energy and Environment - Global environmental issues - Impacts - The Intergovernmental panel on Climate Change (IPCC) - United Nations Framework Conventions on Climate Change (UNFCCC) -The Conference of Parties (COP) - The Kyoto protocol - CDM methodology and procedure -Sustainable Development.

Contact Periods:

Lecture:	45 Periods	Tutorial:	- Periods	Practical: – Periods	Project:	- Periods

TEXT BOOKS:

- 1. C.B.Smith, "Energy Management Principles", Pergamon Press, 2nd Edition, 2015.
- 2. Dale R. Patrick, S. Fardo, Ray E. Richardson, "Energy Conservation Guidebook", Fairmont Press, 3rd Edition, 2015.

Total: 45 Periods

Dr. S. Balasubramanian, M.Tech., Ph.D. **Professor & Head** Department of Chemical Engineering KPR Institute of Engineering & Technology Arasur, Coimbatore - 641 407

9

9

9

9

REFERENCES:

- 1. Wayne C. Turner, "Energy Management Handbook", 5th Edition, The Fairmont Press, Georgia, 2001
- 2. Abbi Y. A., Jain Shashank, "Handbook on Energy Audit and Environment management", 5th Edition, TERI Press, New Delhl, 2006

EVALUATION PATTERN:

	Contin	uous Internal As	sessments		
Assessment I (100 Marks)		Assessme (100 Mar			End Semester
*Individual Assignment / Case Study / Seminar / Project / MCQ	Written Test	*Individual Assignment / Case Study / Seminar / Project / MCQ	Written Test	Total Internal Assessments	Examinations
40	60	40	60	200	100
	_			40	60
Tota		tal		10	0

*Role Play / Group Discussions / Debates / Oral Presentations / Poster Presentations / Technical presentations can also be provided. Course Coordinator can choose any one / two components based on the nature of the course.

Dr. S. Balasubramanian, M.Tech., Ph.D. Professor & Head Department of Chemical Engineering KPR Institute of Engineering & Technology Arasur, Coimbatore - 641 407

B

B.TECH. – CH	- R2021 - CBCS VERTICAL IV	Aci	ntre ader	ពង្វែត	う時間の	Г
U21CHP20	ENERGY EFFICIENCY IN ELECTRICAL AND THERMAL UTILITIES	* Co L 3	Cate T 0	P 0	PEC J 0	C 3

Aineerin

PRE-REQUISITES:

Nil

COURSE OBJECTIVES:

- To understand the fundamentals of energy efficiency in electrical and thermal utilities.
- To learn about energy-efficient technologies and their application in industrial systems.
- To analyze and assess energy use in different systems and identify opportunities for energy • conservation.

COURSE OUTCOMES:

Upon completion of the course, the student will be able to

- CO1: Understand the theory behind principles of electrical systems (Understand)
- CO2: Understand energy-efficient technologies such as variable speed drives, energy-efficient motors, and automatic power factor controllers in industrial systems to optimize energy use and reduce waste (Understand)
- CO3: Understand the energy conservation measures in thermal utilities such as boilers, furnaces, heat exchangers, and thermic fluid heaters (Understand)
- CO4: Relate the technical and economic feasibility of cogeneration and waste heat recovery systems and their potential benefits for industrial applications (Understand)
- CO5: Understand the waste heat recovery system and select appropriate commercial waste heat recovery devices to improve energy efficiency and reduce environmental impact (Understand)

CO5	2	2	2	1	-	2	2	2	2	2	2	2	2	2
CO4	2	2	2	1	-	2	2	2	2	2	2	2	2	2
CO3	2	2	2	1	-	2	2	2	2	2	2	2	2	2
CO2	2	2	2	1	-	2	2	2	2	2	2	2	2	2
CO1	2	2	2	1	-	2	2	2	2	2	2	2	2	2
POs COs	PO1	PO2	PO3	P04	P05	PO6	P07	P08	P09	PO10	PO11	PO12	PSO1	PSO:

CO-PO MAPPING:

Dr. S. Balasubramanian, M.Tech., Pn.D. Professor & Head Department of Chemical Engineering KPR Institute of Engineering & Technology Arasur, Coimbatore - 641 407

SYLLABUS:

UNIT I ELECTRICAL SYSTEMS

Introduction to electric power supply systems – Electricity billing – Electrical load management and maximum demand control – Power factor improvement and benefits – Transformers – Distribution losses in industrial system – Assessment of transmission and distribution losses in power systems – Estimation of technical losses in distribution system – Demand side management – Harmonics – Analysis of electrical power systems

UNIT II ENERGY EFFICIENCY IN INDUSTRIAL SYSTEMS

Electric motors – Compressed air system – Fans and Blowers– Pumps and Pumping system– Cooling Tower: components – Types – losses – Efficiency – Factors affecting performance– control strategies– energy conservation opportunities – Energy Efficient Technologies in Electrical Systems – Maximum demand controllers – Automatic power factor controllers – Energy efficient motors – Soft starters with energy saver – Variable speed drives – Energy efficient transformers – Electronic ballast – Occupancy sensors – Energy efficient lighting controls – Energy saving potential of each technology

UNIT III ENERGY EFFICIENCY IN THERMAL UTILITIES

Thermal systems – Fuels and Combustion – Boilers– Furnaces – Heat exchangers and Thermic Fuid heaters - Efficiency computation and energy conservation measures; Steam distribution and usage – Steam traps – Condensate recovery – Flash steam utilization – Insulation & Refractories – Energy conservation in major utilities; Pumps – Fans – Blowers – Compressed alr systems– Refrigeration and Air Conditioning systems – Cooling Towers – DG sets

UNIT IV COGENERATION

Need for Cogeneration – Principle – Types – Factors affecting cogeneration – Important technical parameters for cogeneration – Prime movers for cogeneration – Steam turbine efficiency – Cogeneration heat rate and efficiency assessment – Illustrative case – Trigeneration – Microturbine

UNIT V WASTE HEAT RECOVERY

Introduction – Types and applications – Benefits – Development of a waste heat recovery system – Commercial waste heat recovery devices.

Contact Periods:

Lecture:	45 Periods	Tutorial:	- Periods	Practical: - Periods	Project:	- Periods
					Total:	45 Periods

TEXT BOOKS:

1. Frank Kreith and D. Yogi Goswami, Energy Management and Conservation Handbook, 2nd Edition,CRC Press, 2008

199

Dr. S. Balasubramanian, M.Tech., Fn.U. Professor & Head Department of Chemical Engineering KPR Institute of Engineering & Technology Arasur, Coimbatore - 641 407

9

9

Q.

9

2. Zoebelein, Hans, "Guide books for National Certification Examination for Energy Manager", 4th Edition, Bureau of Energy Efficiency, 2015

REFERENCES:

- 1. S, C. Tripathy, "Utilization of Electrical Energy and Conservation", McGraw Hill, 2nd Edition, 1991
- Shobh Nath Singh, "Non-Conventional Energy Resources", Pearson Education India, 1st Edition 2015

EVALUATION PATTERN:

	Contin	uous Internal As	sessments		
Assessment I (100 Marks)		Assessme (100 Mar			End Semester
*Individual Assignment / Case Study / Seminar / Project / MCQ	Written Test	*Individual Assignment / Case Study / Seminar / Project / MCQ	Written Test	Total Internal Assessments	Examinations
40	60	40	60	200	100
	÷			40	60 ·
То		tai		10	0

*Role Play / Group Discussions / Debates / Oral Presentations / Poster Presentations / Technical presentations can also be provided. Course Coordinator can choose any one / two components

		ader	nic	18		
U21CHP21	ENERGY PERFORMANCE ASSESSMENT FOR EQUIPMENT & UTILITY SYSTEMS	Urse bat	Cater T*	P 0	PEC J 0	C 3

aineer

Centre for

PRE-REQUISITES:

Nil

COURSE OBJECTIVES:

- To understand the various types of equipment used in industries such as boilers, furnaces, heat exchangers, electric motors, fans, blowers, pumps, compressors, and HVAC systems, and their performance testing methods and standards.
- To gain knowledge about the major areas and equipment used in thermal power stations, including coal handling plants, coal mills, boilers, turbines, and condensers, and the processes involved in iron and steel making and cement manufacturing.
- To understand the energy consumption patterns, material and energy balance, and performance monitoring of process equipment and utilities in industries such as the textile, pulp and paper, and fertilizer industries.

COURSE OUTCOMES:

Upon completion of the course, the student will be able to

- CO1: Understand the fundamental principles and working mechanisms of various equipment used in industries such as boilers, furnaces, cogeneration systems, heat exchangers, electric motors, fans and blowers, pumps, compressors, and HVAC systems (Understand)
- CO2: Understand the major areas/equipment involved in thermal power stations and steel, cement, pulp and paper, and fertilizer industries, along with their material and energy balance (Understand)
- **CO3:** Understand the energy consumption patterns in different industries and how to monitor and optimize the energy consumption of production processes, process equipment, and utilities (Understand)
- CO4: Understand the financial analysis of energy efficiency projects, including fixed and variable costs, interest charges, simple payback period, and discounted cashback methods (Understand)
- CO5: Understand the energy performance of buildings and commercial establishments, including the determination of energy performance index and annual average hourly energy use, and the assessment of HVAC and lighting systems (Understand)

201

CO-PO MAPPING:

Correlation	i level	s:	1: Sli	ght (Lo	w)	2: M	oderat	e (Me	dium)	3: Substantial (High)				
CO5	2	2	2	1	-	2	2	2	2	2	2	2	2	2
CO4	2	2	2	1	-	2	2	2	2	2	2	2	2	2
CO3	2	2	2	1	-	2	2	2	2	2	2	2	2	2
CO2	2	2	2	1	-	2	2	2	2	2	2	2	2	2
CO1	2	2	2	1	-	2	2	2	2	2	2	2	2	2
POs COs	PO1	PO2	PO3	P04	PO5	P06	P07	PO8	PO9	PO10	P011	PO12	PSO1	PSO

SYLLABUS:

UNIT I INTRODUCTION

Boilers – Furnaces – Cogeneration systems – Heat Exchangers – Electric motors and variable speed drives – Fans and blowers – Pumps – Compressors – HVAC System – Purpose of the performance test – Testing methods – Scope – Standards – Factors.

UNIT II THERMAL POWER STATION AND STEEL INDUSTRY

Thermal Power station: Major area/equipment – Coal handling plant – Coal Mills – Boilers – Draft system – Water pumping system – LP and HP heaters – Turbine – Condensers.

Steel industry: Iron and Steel making routes – Primary steel process and secondary steel process – Case example.

UNIT III CEMENT INDUSTRY AND TEXTILE INDUSTRY

Cement Industry: Cement manufacturing process - Material and Energy balance - Raw mill.

Textile Industry: Textile manufacturing process – Monitoring of energy consumption in production process – Performance monitoring of process equipment – Performance monitoring of utilities.

UNIT IV PULP-PAPER AND FERTILIZER INDUSTRY

Pulp and Paper Industry: Pulp and paper manufacturing processes – Energy consumption pattern - Material and energy balance.

Fertilizer Industry: Fertilizer manufacturing processes - Energy flow - Material and Energy balance.

UNIT V FINANCIAL ANALYSIS, BUILDINGS AND COMMERCIAL 9 ESTABLISHMENTS

Financial Analysis: Fixed and variable costs – Interest charges – Simple payback period – Discounted cashback methods – Factors.

Buildings and Commercial Establishments: Determination of EPI and AAHEPI - Significance of

9

9

9

building envelope - Assessment of HVAC systems - Performance assessment of lighting system.

Contact Periods:

Lecture:	45 Periods	Tutorial: - Periods	Practical: - Periods	Project: - Periods	
				Total: 45 Periods	

TEXT BOOKS:

- 1. C.B.Smith, "Energy Management Principles", 2nd Edition, Pergamon Press, 2015.
- Dale R. Patrick, S. Fardo, Ray E. Richardson, "Energy Conservation Guidebook", 3rd Edition, Fairmont Press, 2015.

REFERENCES:

- Wayne C. Turner, "Energy Management Handbook", , 5th Edition, The Fairmont Press, Georgia, 2001.
- Abbi Y. A., Jain Shashank, "Handbook on Energy Audit and Environment management", 5th Edition, TERI Press, New Delhi, 2006.

EVALUATION PATTERN:

	Contin	uous Internal As	sessments		
Assessment I (100 Marks)		Assessme (100 Mar			End Semester
*Individual Assignment / Case Study / Seminar / Project / MCQ	nt / Written Assign y / Test Case S / Semi	*Individual Assignment / Case Study / Seminar / Project / MCQ	Written Test	Total Internal Assessments	Examinations
40	60	40	60	200	100
	_			40	60
	То	tal		10	0

*Role Play / Group Discussions / Debates / Oral Presentations / Poster Presentations / Technical presentations can also be provided. Course Coordinator can choose any one / two components based on the nature of the course.

HAN

Dr. S. Balasubramanian, M.Tech., Ph.D. Professor & Head Department of Chemical Engineering KPR Institute of Engineering & Thinklogy Arasur, Coimbatore - 641 407

VERTICAL IV

			Cate	gory	PEC	5
U21CHP22	BIOENERGY	L	Т	Р	J	c
		3	0	0	0	3

PRE-REQUISITES:

● N型

COURSE OBJECTIVES:

- To understand the classification, structure, properties, and functional roles of various biomolecules, including amino acids, carbohydrates, nucleotides, lipids, and fatty acids.
- To analyze and evaluate different techniques for biomass assessment, biochemical conversions, and thermochemical and chemical conversions, including biocatalysis by enzymes and pathways, fermentation and bioprocess engineering, and thermochemical conversion processes.
- To demonstrate an understanding of the physical and chemical characteristics of biofuels, including their Indian and international standard specifications, and assess their adaptation in various applications, including power generation, sustainable co-firing of biomass with coal, and biomass integrated gasification/combined cycles systems.

COURSE OUTCOMES:

Upon completion of the course, the student will be able to

- CO1: Understand the fundamentals of biological systems necessary to grasp bioenergy concepts global bioenergy scenario and relate to bioenergy resources in India (Understand)
- CO2: Understand the various biofuel types and its characteristics (Understand)
- CO3: Understand the various types of bioenergy conversion systems in practice (Understand)
- CO4: Understand the basic knowledge on algal culture, biomass harvest and biodiesel production (Understand)
- CO5: Understand the national and international standards of biodiesel (Understand)

CO-PO MAPPING:	
----------------	--

Correlation	1 level:	S:	1: Slig	ght (Lo	w)	2: M	oderat	e (Med	dium)	3: Substantial (High))
CO5	2	2	2	1	-	2	2	2	2	2	2	2	2	2
CO4	2	2	2	1	-	2	2	2	2	2	2	2	2	2
CO3	2	2	2	1	-	2	2	2	2	2	2	2	2	2
CO2	2	2	2	1	-	2	2	2	2	2	2	2	2	2
CO1	2	2	2	1	-	2	2	2	2	2	2	2	2	2
POs COs	P01	PO2	PO3	PO4	PO5	P06	P07	PO8	P09	PO10	P011	PO12	PSO1	PSO

Dr. S. Balasubramanian, M.Tech., Ph.D. Professor & Head Department of Chemical Engineering KPR Institute of Engineering

SYLLABUS:

INTRODUCTION TO BIOMOLECULES UNITE

Classification of amino acids - Carbohydrates and nucleotides; Structure and properties of carbohydrate polymers - Proteins and nucleic acids; Classification and utility of lipids and fatty acids; Functional roles of biomolecules - Energy carriers - Enzyme cofactors and biochemical regulation. Biosynthesis and Metabolism.

UNIT II BIOMASS

Biomass resources; classification and characteristics - Techniques for biomass assessment; Application of remote sensing in forest assessment - Biomass estimation - Biomass to biofuel; Source and classification of biofuels and their characteristics.

BIOCHEMICAL CONVERSIONS UNIT III

Blocatalysis by enzymes and pathways - Fermentation and bioprocess engineering - Chemical kinetics - Mathematical modelling of biochemical reactions - Bioreactor designs; Biodegradation and biodegradability of substrate; Anaerobic digestion - Bioconversion of lignocellulosic feedstock to sugars - Bioconversion of sugars and starches to fuels - Difference of the technologies of starch ethanol and cellulosic ethanol.

THERMOCHEMICAL AND CHEMICAL CONVERSIONS UNIT IV

Thermochemical Conversion: Direct combustion - Incineration - Pyrolysis - Gasification and liquefaction; Economics of thermochemical conversion - Biogasification: Biomethanation processbiogas digester types - Biogas utilisation; Waste to energy. Chemical Conversion: Hydrolysis & hydrogenation; Solvent extraction of hydrocarbons; Solvolysis of wood - Blocrude - Blodicsel production via chemical process - Catalytic distillation - Transesterification methods; Fischer-Tropsch diesel -- Chemicals from biomass.

UNIT V BIOFUEL STANDARDS AND POWER GENERATION

Physical and chemical characteristics of biofuels - Biomass - Wood gas - Blomethane; Ethanolbiodisel - Wood oil; Bioblends - Indian and International standard specifications - Bioblends; Adaptation of biofuel in various applications - Biomass integrated gasification/combined cycles systems - Sustainable co-firing of biomass with coal; Biofuel economy - Case studies.

Contact Periods:

Practical: - Periods 45 Periods Tutorial: - Periods Lecture:

Project: - Periods Total: 45 Periods

205

Dr. S. Balasubramanian, M.Tech., Ph.D. **Professor & Head** Department of Chemical Engineering KPR Institute of Engineering & Technology Arasur, Coimbatore - 641 40%

9

9

â

9

TEXT BOOKS:

- 1. David L. Nelson and Michael M. Cox, "Lehninger's Principles of Biochemistry", 1st Edition, Macmillan Worth publisher, 2009.
- 2. Jeremy M Berg, LubertStryer, John L. Tymoczko, "Biochemistry", 6th Edition, W. H. Freeman, 2008.
- 4. D. Voet and J. Voet, "Voet and Voet's Biochemistry", 3rd Edition, John Wiley and Sons , 2005.

REFERENCES:

- 1. Bent Sorensen, "Renewable Energy", Academic Press, 3rd Edition, W. H. Freeman, 2004.
- 2. Zoebelein, Hans, "Dictionary of Renewable Resources", 2nd Edition, Wiley-VCH,2009.

EVALUATION PATTERN:

	Contin	uous Internal As	sessments		
Assessme (100 Mari		Assessme (100 Mar			End Semester
*Individual Assignment / Case Study / Seminar / Project / MCQ	Written Test	*Individual Assignment / Case Study / Seminar / Project / MCQ	ignment / Written se Study / Test eminar /		Examinations
40	60	40	60	200	100
			40	60	
	То	10	0		

*Role Play / Group Discussions / Debates / Oral Presentations / Poster Presentations / Technical presentations can also be provided. Course Coordinator can choose any one / two components

1			13	5	DEA	
U21CHP23	RENEWABLE AND NON - RENEWABLE ENERGY	tore	*T	pory: P	J	C
	RESOURCES	3	0		3	

PRE-REQUISITES:

Nil

COURSE OBJECTIVES:

- To understand the global and Indian energy scenario, and the present and future energy demands.
- To familiarize with renewable and non-renewable energy sources and their classification, including their patterns of consumption and utilization.
- To introduce various non-conventional energy resources, including solar, geothermal, wind, bioenergy, tidal, and waste recycling plants, and their thermodynamics, working principles, performance, and limitations.

COURSE OUTCOMES:

Upon completion of the course, the student will be able to

- **CO1:** Understand the current energy scenario in India and globally, and assess the present and future energy demands (Understand)
- **CO2:** Compare the renewable and non-renewable energy sources, and evaluate the relative merits and demerits of each type (Understand)
- CO3: Understand the thermodynamics of energy conversion processes for various energy sources, including coal, petroleum, and solar energy (Understand)
- CO4: Understand the performance and limitations of various energy conversion systems, such as wind turbines, geothermal energy plants, and wave/tidal energy converters (Understand)
- CO5: Evaluate the impact of energy utilization on the environment, and develop strategies for sustainable energy management and conservation (Evaluate)

CO-PO MAPPING:

Correlation	n level:	3:	1: Slig	ght (Lo	w)	2: M	oderat	e (Me	ledium) 3: Substantial (High))	
CO5	2	2	2	1	-	2	2	2	2	2	2	2	2	2
CO4	2	2	2	1	-	2	2	2	2	2	2	2	2	2
CO3	2	2	2	1	-	2	2	2	2	2	2	2	2	2
CO2	2	2	2	1	-	2	2	2	2	2	2	2	2	2
CO1	2	2	2	1	-	2	2	2	2	2	2	2	2	2
POs COs	PO1	PO2	PO3	PO4	PO5	P06	P07	PO8	PO9	PO10	P011	PO12	PSO1	PSO:

SYLLABUS:

UNIT I INTRODUCTION

Energy Scenario: Indian and global, Present and future energy demands – Energy crisis– Classification of various energy sources – Renewable and non-renewable energy sources – Pattern of energy consumption.

UNIT II RENEWABLE ENERGY RESOURCES

Solid Fuels: Coal: Origin – Formation – Analysis – Classification – Washing and carbonization– Treatment of coal gas – Recovery of chemicals from coal tar – Coal gasification – Liquid fuel synthesis from coal – Carbonization of coal – Briquetting of fines. Liquid and Gaseous Fuels: Crude petroleum – Physical processing of crude petroleum – Fuels from petroleum – Storage and handling of liquid fuels – Natural and liquefied petroleum gases – Gas hydrates – Gasification of liquid fuels – Carbureted water gas – Non Renewable Energy Resources: Fossil fuels and their reserves nuclear energy – Types – Uses and effects Energy utilization and its effects on environment Energy crisis

UNIT III NON - RENEWABLE ENERGY RESOURCES

Introduction: Various non-conventional energy resources – Introduction – Availability – Classification – Relative merits and demerits. Solar Cells: Theory of solar cells. Solar cell materials – Solar cell array – Solar cell power plant – Limitations. Solar Thermal Energy: Solar radiation – Flat plate collectors and their materials – Applications and performance – Focusing of collectors and their materials – Applications and performance; Solar thermal power plants

UNIT IV GEOTHERMAL ENERGY AND WIND ENERGY

Geothermal Energy: Resources of geothermal energy – Thermodynamics of geothermal energy conversion – Electrical conversion – Non-electrical conversion – Environmental considerations. Wind power and its sources – Site selection – Criterion – Momentum theory – Classification of rotors – Concentrations and augments – Wind characteristics. Performance and Limitations of energy conversion systems.

UNIT V BIOENERGY AND TIDAL ENERGY

Bio-mass: Availability of bio-mass and its conversion theory. Ocean Thermal Energy Conversion (OTEC): Availability – Theory and working principle – Performance and limitations. Wave and Tidal Wave: Principle of working – Performance and limitations – Waste Recycling Plants

Contact Periods:

Lecture:

45 Periods Tutorial: - Periods

Practical: - Periods

Project: - Periods

Total: 45 Periods

Dr. S. Balasubramanian, M.Tech., Ph.D. Professor & Head Department of Chemical Engineering KPR Institute of Engineering & Technology Arasur, Coimbatore - 641 407

208

ġ

9

9

9

TEXT BOOKS:

- 1. Raja, "Introduction to Non-Conventional Energy Resources", 1st Edition, Scitech Publications, 2015
- 2. John Twidell and Tony Weir, "Renewal Energy Resources", 3rd Edition, BSP Publications, 2015
- M.V.R. Koteswara Rao, "Energy Resources: Conventional and Non-Conventional", 1st Edition, BSP Publications, 2006

REFERENCES:

- Godfrey Boyle, "Renewable Energy Power For A Sustainable Future", 3rd Edition, Oxford University Press, 2012
- 2. Rao, S. and Parulekar, B.B., "Energy Technology Non-conventional Renewable and Conventional", 3rd Edition, Khanna Publishers, 2000

EVALUATION PATTERN:

	Contin	uous Internal As	sessments		
Assesame (100 Mark		Assessme (100 Mari			End Semester
*Individual Assignment / Case Study / Seminar / Project / MCQ	Written Test	*Individual Assignment / Case Study / Seminar / Project / MCQ	Total Internal Assessments Written Test	Examinations	
40	60	40	60	200	100
			40	60	
	То	tal	10	0	

*Role Play / Group Discussions / Debates / Oral Presentations / Poster Presentations / Technical presentations can also be provided. Course Coordinator can choose any one / two components based on the nature of the course.

Dr. S. Balasubramanian, M.Tech., Ph.D. Professor & Head Department of Chemical Engineering KPR Institute of Engineering & Thebhology Arasur, Colmbatore - 641 407

VERTICAL IV

			;			
U21CHP24	HYDROGEN AND FUEL CELL TECHNOLOGIES	L	T	Category: T P 0 0		c
		3	0	0	0	3

PRE-REQUISITES:

Nil

COURSE OBJECTIVES:

- To understand the hydrogen fundamentals, storage and applications.
- To Identify different areas of fuel cell technology.
- To find the applications of all the areas in day-to-day life.

COURSE OUTCOMES:

Upon completion of the course, the student will be able to

- **CO1:** Understand the physical and chemical properties of hydrogen, its production and storage options, and safety and management concerns related to hydrogen applications (Understand)
- CO2: Understand the different hydrogen storage methods and their applications (Understand)
- **CO3:** Understand the principles, working, thermodynamics, and kinetics of different types of fuel cells, and evaluate their relative merits and demerits (Understand)
- **CO4:** Compare different hydrogen storage technologies such as pressure cylinders, liquid hydrogen, metal hydrides, and carbon fibers, and analyze different reformer technologies for hydrogen production (Understand)
- **CO5:** Understand fuel cycle analysis to fuel cell technology and compare it with other competing technologies such as battery-powered vehicles, SI engines fueled by natural gas and hydrogen, and hybrid electric vehicles (Understand)

Correlation levels: 1: Slight (Low) 2: Moderate (Medium) 3: Substantial (High))								
CO5	2	2	2	1	-	2	2	2	2	2	2	2	2	2
CO4	2	2	2	1	-	2	2	2	2	2	2	2	2	2
CO3	2	2	2	1	-	2	2	2	2	2	2	2	2	2
CO2	2	2	2	1	-	2	2	2	2	2	2	2	2	2
CO1	2	2	2	1	-	2	2	2	2	2	2	2	2	2
POs COs	P01	PO2	PO3	P04	PO5	P06	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO

CO-PO MAPPING:

Q

9

9

9

9

SYLLABUS:

UNIT I HYDROGEN FUNDAMENTALS

Hydrogen as a source of energy – Physical and chemical properties – Salient characteristics– Relevant issues and concerns.

UNIT II HYDROGEN STORAGE AND APPLICATIONS

Production of hydrogen – Steam reforming – Water electrolysis – Gasification and woody biomass conversion – Biological hydrogen production – Photo dissociation – Direct thermal or catalytic splitting of water– Hydrogen storage options – Compressed gas – Liquid hydrogen – Hydride– Chemical storage – Safety and management of hydrogen – Applications of hydrogen.

UNIT III FUEL CELLS - TYPES

Brief history – Principle – Working – Thermodynamics and kinetics of fuel cell process – Types of fuel cells; AFC – PAFC – SOFC – MCFC – DMFC – PEMFC – Relative merits and demerits – Performance evaluation of fuel cell – Comparison of battery Vs fuel cell.

UNIT IV FUEL CELLS – APPLICATION AND ECONOMICS

Fuel cell usage for domestic power systems – Large scale power generation – Automobile – Space applications – Economic and environmental analysis on usage of fuel cell – Future trends of fuel cells.

UNIT V FUELING AND FUEL CYCLE ANALYSIS

Hydrogen storage technology – Pressure cylinders – Liquid hydrogen – Metal hydrides – Carbon fibers – Reformer technology – Steam reforming – Partial oxidation – Auto thermal reforming – CO removal – Fuel cell technology based on removal like bio-mass – Introduction to fuel cycle analysis – Application to fuel cell and other competing technologies like battery powered vehicles – SI engine fueled by natural gas and hydrogen and hybrid electric vehicle.

Contact Periods:

Lecture:	45 Periods	Tutorial:	- Periods	Practical: - Periods	Project:	- Periods
					Total:	45 Periods

TEXT BOOKS:

- Supramaniam Srinivasan, "Fuel Cells: From fundamentals to applications",1st Edition, Springer, 2010
- 2. Viswanathan B, "Fuel Cells Principles and Applications", 1st Edition, Universities press, 2007

211

REFERENCES:

- Bent Sorensen (Sorensen), "Hydrogen and Fuel Cells: Emerging Technologies and Applications", 5th Edition, Elsevier Academic Press, UK, 2011
- 2. Kordesch, K and G.Simader, "Fuel Cell and Their Applications", 1st Edition, Wiley-Vch, Germany, 1996
- 3. Hart, A.B and G.J.Womack, "Fuel Cells: Theory and Application", 2nd Edition, Prentice Hall, NewYork Ltd., London, 1989

EVALUATION PATTERN:

	Contin	uous Internal As	sessments			
Assessme (100 Mari		Assessme (100 Mar	0253		End Semester	
*Individual Assignment / Case Study / Seminar / Project / MCQ	Written Test	the dividual		Total Internal Assessments	End Semester Examinations	
40	60	40	60	200	100	
	-1.L	tal	40	60		
	10	0				

*Role Play / Group Discussions / Debates / Oral Presentations / Poster Presentations / Technical presentations can also be provided. Course Coordinator can choose any one / two components based on the nature of the course.

Centre for KPRIET Academic Courses

VERTICAL V

		(0)	nbat	Cate	gory	: PEC	2
U21CHP25	WATER CONSERVATION AND MANAGEMENT		L	T	P	J	C
			3	0	0	0	3

PRE-REQUISITES:

- Nil,
- COURSE OBJECTIVES:
- The objective of the course is to provide the student with an understanding of the concepts and practices in Methodology of water conservation and water management
- To understand the various methods of water harvesting and Water resource development
- To understand the Different methods of water reuse and recycling and water management

COURSE OUTCOMES:

Upon completion of the course, the student will be able to

CO1: To understand the Various methods of conservation of water and different models (Understand)

- CO2: To understand the Different Methods of water Harvesting (Understand)
- CO3: Plan and design Conservation and augmentation of water resources, water harvesting and groundwater recharge structures (Apply)
- CO4: Students able to understand the different methodology of treatment of waste water (Understand)

CO5: Analysing the complex issues In water management (Analyze)

Correlation	Correlation levels: 1: Slight (Low)				w)	2: M	oderat	e (Me	dium)		3: Sub	stantia	al (High)
CO5	3	-	-	-	2	2	-	-	-	-	-	-	1	1
CO4	2	-	-	-	2	-	-	-	-	-	-	-	1	1
CO3	2	2	-	-	2	2	1	2	-	-	-	-	1	1
CO2	2		-	-	2	-	-	-	-	-	•	-	1	1
CO1	3	2	-	-	2	2	-	-	-	-	-	-	1	1
POs COs	P01	P02	PO3	PO4	PO5	P06	P07	PQ8	P09	PO10	PO11	PO12	PSO1	PSO

CO-PO MAPPING:

SYLLABUS:

UNIT I INTRODUCTION

Water and life- Management and conservation of water - Climate data- Conceptual models of runoff hydrograph- Dynamic models.

213

9

UNIT II WATER HARVESTING

Storage structures – Percolation Tanks – Yield from catchments – Diversion of runoff – Ponds and reservoirs – Earth embankments

UNIT III WATER RESOURCES PLANNING

Statement of objectives – Data requirements – Project formulation – Environmental considerations in planning – Systems analysis – Pitfalls in project planning – Conservation and augmentation of water resources – Multipurpose projects – Functional requirements in multi-purpose project. Compatibility of multipurpose uses – Application of water resources systems engineering to practical problems

UNIT IV RECYLING AND REUSE

Recycling and reuse of water – Multiple uses of water – Reuse of water in agriculture – Low cost waste water treatment technologies – Economic and social dimensions – Packaged treatment units – Reverse osmosis and desalination in water reclamation

UNIT V WATER MANAGEMENT

Water quality management – Principles of water quality – Water quality classification – Water quality standards – Water quality indices – TMDL Concepts – Water quality models

Contact Periods:

Lecture:	45 Periods	Tutorial:	- Periods	Practical: - Periods	Project:	- Periods
					Total:	45 Periods

TEXT BOOKS:

- 1. R.K. Liniley and Franzini, "Water Resources Engineering", 1st Edition, McGraw-Hill Book Co., 2005
- 2. Hall and Dracup, "Water Resources Systems Engineering", 1st Edition, McGraw Hill Book Co., 2007

REFERENCES:

- George Tchobanoglous, Franklin Louis Burton, Metcalf & Eddy, H. David Stense, "Wastewater Engineering: Treatment and Reuse", 1st Edition, McGraw-Hill, 2002.
- Suresh. R, "Soil and water conservation engineering", 1st Edition, Standard publication, New Delhi, 2007
- Chatterjee, S. N., Water Resources Conservation and Management, 1st Edition, Atlantic Publishers, 2008

Dr. S. Balasubramanian, M.Tech., Ph.D. Professor & Head Department of Chemical Engineering KPR Institute of Engineering & Technology Arasur, Coimbatore - 641 407

9

9

EVALUATION PATTERN:

	Contin	uous Internal As	sessments		-
Assessment I (100 Marks)		Assessme (100 Mar			End Semester
*Individual Assignment / Case Study / Seminar / Project / MCQ	Written Test	*Individual Assignment / Case Study / Seminar / Project / MCQ	/ Test		Examinations
40	60	40	60	200	100
			40	60	
	То	tal	10	0	

*Role Play / Group Discussions / Debates / Oral Presentations / Poster Presentations / Technical presentations can also be provided. Course Coordinator can choose any one / two components based on the nature of the course.

VERTICAL V

		Coimp	Cate	gory:	PEC	;
U21CHP26	MODERN SEPARATION TECHNIQUES	L	Ť	Р	J	c
		3	0	0	0	3

PRE-REQUISITES:

Nil

COURSE OBJECTIVES:

- Gain knowledge about recent separation methods
- Gain knowledge about various techniques used for separation
- To know about advanced mass transfer operations

COURSE OUTCOMES:

Upon completion of the course, the student will be able to

CO1: Understand about modern separation techniques use in the industry (Understand)

CO2: Analyze the separation processes for selecting optimal process for new and innovative applications (Analyze)

CO3: Apply the latest concepts like super critical fluid extraction, evaporation, lyophilisation etc., in Chemical process industries (Apply)

CO4: Understand Innovative techniques of controlling and managing oil spills (Understand)

CO5: Ability to exhibit the skill to develop membrane processes, adsorption process and inorganic separation process (Understand)

CO-PO MAPPING:

Correlation	levels	s:	1: Sli	ght (Lo	w)	2: M	oderat	e (Med	dium)		3: Sub	stantia	l (High)
CO5	2	1	2	2	3	-	-	1	-	-	-	-	3	3
004	2	1	2	2	3	-	-	1	-	-	-	-	3	3
CO3	2	1	2	2	3	-	-	1	-	-	-	-	3	3
CO2	2	1	2	2	3	-	-	1	-	-	-	-	3	3
C01	2	1	2	2	3	-	•	1	-	-	•	-	3	3
POs COs	P01	PO2	PO3	P04	P05	PO6	P07	P08	PO9	PO10	PO11	PO12	P\$01	PSO2

SYLLABUS:

UNIT I BASICS OF SEPARATION PROCESS

9

Review of Conventional Processes - Recent advances in Separation Techniques based on size -

9

9

9

9

surface properties – Ionic properties and other special characteristics of substances – Process concept – Theory and Equipment used in cross flow Filtration – Cross flow Electro Filtration – Surface based solid – Lliquid separations involving a second liquid

UNIT II MEMBRANE SEPARATIONS

Types and choice of Membranes – Plate and Frame – Tubular – Spiral wound and hollow fibre Membrane Reactors and their relative merits – Commercial – Pilot Plant and Laboratory Membrane permeators involving Dialysis – Reverse Osmosis – Nanofiltration – Ultra filtration and Micro filtration – Ceramic – Hybrid process and Biological Membranes

UNIT III SEPARATION BY ADSORPTION

Types and choice of Adsorbents – Adsorption Techniques – Dehumidification Techniques – Affinity Chromatography and Immuno Chromatography – Recent Trends in Adsorption

UNIT IV INORGANIC SEPARATIONS

Controlling factors – Applications – Types of Equipment employed for Electrophoresis – Dielectrophoresis – Ion Exchange Chromatography and Electrodialysis – EDR – Bipolar Membranes

UNIT V OTHER TECHNIQUES

Separation Involving Lyophilisation – Pervaporation and Permeation Techniques for solids – Liquids and gases – Zone melting – Adductive Crystallization – Other Separation Processes – Supercritical fluid Extraction – Oil spill Management – Industrial Effluent Treatment by Modern Techniques

Contact Periods:

Lecture:	45 Periods	Tutorial: -	Periods	Practical: - Periods	Project:	- Periods
					Total:	45 Periods

TEXT BOOKS:

- 1. Lacey, R.E., S.Looeb, "Industrial Processing with Membranes", Vol.1, Wiley Inter Science, 1972
- 2. King, C.J., "Separation Processes", 14 Edition, Tata McGraw-Hill Publishing Co. Ltd., 1982

REFERENCES:

- 1. King, C. J., "Separation Processes", 1st Edition, Tata McGraw Hill, 1982
- Roussel, R. W., "Handbook of Separation Process Technology", 1st Edition, John Wiley, New York, 1987.
- 3. Nakagawal, O. V., "Membrane Science and Technology", 1* Edition, Marcel Dekkar, 1992

Dr. S. Balasubramanian, M.Tech., Ph.D. Professor & Head Department of Chemical Engineering KPR Institute of Engineering & Technology Arasur, Coimbatore - 641 407

EVALUATION PATTERN:

	Contin	uous Internal As	sessments			
Assessme (100 Mari		Assessment II (100 Marks)			End Semester	
*Individual Assignment / Case Study / Seminar / Project / MCQ	Written Test	*Individual Assignment / Case Study / SemInar / Project / MCQ	Written Test	Total Internal Assessments	Examinations	
40	60	40	60	200	100	
				40	60	
Total				100		

*Role Play / Group Discussions / Debates / Oral Presentations / Poster Presentations / Technical presentations can also be provided. Course Coordinator can choose any one / two components based on the nature of the course.

stitute	Cent	tre fo	C KP	RIE	
		lemi Irses			
(*)		Cate	jory:	PEC	
1		ator	P	J	С
	3	0	0	0	3

PRE-REQUISITES:

U21CHP27

- Nil
- COURSE OBJECTIVES:
- To know about the basics of biological water treatment methods
- To know about the applications of biological water treatment methods.
- To understand about various equipment used in water treatment methods.

VERTICAL V

WASTEWATER TREATMENT

COURSE OUTCOMES:

Upon completion of the course, the student will be able to

CO1: Understanding the Biochemical fundamentals and its operation (Understand)

CO2: Analysis of modeling of ideal suspended growth reactors (Analyze)

CO3: Design and Evaluation of suspended growth processes (Apply)

CO4: Analysis of modeling of ideal attached growth reactors (Analyze)

CO5: Applications of Bioreactor for water treatment (Apply)

CO-PO MAPPING:

Correlation levels: 1: Slight (Low)		2: Moderate (Medium)			3: Substantial (High)									
CO5	3	1	1	1	-	-	-	-	1	1	-	1	2	1
CO4	3	1	1	-	-	-	•	1	1	1	-	1	2	1
CO3	3	1	1	-	-	-	-	1	1	1	-	1	2	1
CO2	3	1	1	-	•	-	-	1	1	1	-	1	2	1
CO1	3	2	1	1	-	-	-	-	1	1	-	1	2	1
POs COs	PO1	P02	PO3	PO4	PO5	P06	P07	P08	P09	PO10	PO11	PO12	PSO1	PSO

SYLLABUS:

UNIT I INTRODUCTION TO BIOCHEMICAL OPERATIONS

9

Classification of Biochemical Operations - Fundamentals of Biochemical Operations

UNIT II TRADITIONAL BIOLOGICAL TREATMENT

Theory – Modeling of Ideal Suspended Growth Reactors: Modeling Suspended Growth Systems – Aerobic Growth of Heterotrophy in a Single Continuous Stirred Tank Reactor – Receiving Soluble Substrate – Multiple Microbial Activities in a Single and Continuous Stirred Tank Reactor

219

9

9

9

UNIT III APPLICATION OF TRADITIONAL BIOLOGICAL TREATMENT

Suspended Growth Reactors: Design and Evaluation of Suspended Growth Processes - Activated Sludge - Biological Nutrient Removal - Aerobic-digestion - Anaerobic Processes - Lagoons

UNIT IV BIOREACTORS FOR WATER TREATMENT

Modeling of Ideal Attached Growth Reactors: Bio-film Modeling. Aerobic Growth of Blomass in Packed Towers – Aerobic Growth of Heterotrophs in Rotating Disc Reactors – Fluidized Bed Biological Reactors

UNIT V APPLICATIONS OF BIOREACTORS FOR WATER TREATMENT

Attached Growth Reactors: Trickling Filter – Rotating Biological Contactor – Submerged Attached Growth Bioreactors

Contact Periods:

Lecture: 45 Periods Tutorial: - Periods Practical: - Periods Project: - Periods Total: 45 Periods

TEXT BOOKS:

1. Grady Jr, C. L., Daigger, G. T., Love, N. G., & Filipe, C. D. "Biological wastewater Treatment" . CRC press, 2018

2. Patwardhan, A. D., " Industrial wastewater treatment" . 1st Edition, PHI Learning Pvt. Ltd., 2017

REFERENCES:

1. Muga, H. E., & Mihelcic, J. R., " Sustainability of wastewater treatment technologies", Vol 1, . Journal of Environmental Management, 2008

2. Cheremisino, N. P., * Handbook of water and wastewater treatment technologies" 1st Edition, .Butterworth – Heinemann, 2001

EVALUATION PATTERN:

	Contin	uous Internal As	sessments			
Assessment I (100 Marks)		Assessme (100 Mar			End Semester	
*Individual Assignment / Case Study / Seminar / Project / MCQ	Written Test Seminar /	*Individual Assignment / Case Study / Seminar / Project / MCQ	Written Test	Total Internal Assessments	Examinations	
40	60	40	60	200	100	
	_			40	60	
Total				100		

*Role Play / Group Discussions / Debates / Oral Presentations / Poster Presentations / Technical presentations can also be provided. Course Coordinator can choose any one / two components based on the nature of the course.

Centre for Academic Courses
* Coint Category: PEC

VERTICAL V

	TERTIONE T	1	1	2/		
U21CHP28	WASTE MANAGEMENT	n bat u	Cate	gory: P	: PEC	c
		3	0	0	0	3

PRE-REQUISITES:

- Nil
- COURSE OBJECTIVES:
- Identify different types of waste and their environmental impacts.
- Implement effective waste collection, segregation, and recycling techniques.
- Develop sustainable waste management strategles that prioritize waste reduction and resource recovery.

COURSE OUTCOMES:

Upon completion of the course, the student will be able to

- CO1: Explain the basic principles and concepts of waste management, including the waste management hierarchy, waste reduction strategies, and the environmental and health (Apply)
- CO2: Identify appropriate waste collection methods and segregation techniques, including source separation, recycling, and composting, in order to effectively manage different types of waste (Understand)
- CO3: Evaluate different waste treatment and disposal methods such as landfilling, incineration, and composting, considering their environmental impacts, cost-effectiveness, and suitability for different types of waste (Apply)
- CO4: Develop sustainable waste management strategies that prioritize waste minimization, recycling, resource recovery, and the use of renewable energy technologies, taking into account social, economic, and environmental factors (Analyze)
- CO5: Identify and interpret waste management policies and regulations at the local, national, and international levels, understanding their implications for waste management practices and the responsibilities of different stakeholders (Understand)

POs P09 P010 P011 P012 PS01 PS02 PO5 PO6 PO7 P08 PO1 PO2 PO3 PO4 COs 1 1 2 . 3 2 -м ---. -CO1 1 1 2 2 ---. _ 3 . -_ . CO2 1 1 2 ----2 2 _ -. --CO3 1 1 2 . 2 2 --_ -÷ -_ -CO4 1 1 2 -÷ 2 _ _ -2 -CO5 --2: Moderate (Medium) 3: Substantial (High) Correlation levels: 1: Slight (Low)

CO-PO MAPPING:

221

SYLLABUS:

UNIT I INTRODUCTION TO WASTE MANAGEMENT

Definition and scope of waste management– Types and sources of waste – Environmental and health impacts of improper waste management – Waste management hierarchy: Reduce – Reuse– recycle and disposal – Waste management regulations and policies

UNIT II WASTE COLLECTION AND SEGREGATION

Waste collection systems: Municipal – Residential – commercial and industrial – Collection methods: Curbside pickup – Drop-off centers waste transfer stations – Waste segregation techniques: source separation – Recycling and composting – Waste collection equipment and technology – Community engagement and awareness program

UNIT III WASTE TREATMENT AND DISPOSAL

Waste treatment methods: Landfilling – Incineration and composting – Landfill design and operation: liner systems – Leachate collection and gas management – Incineration processes and emission control – Composting techniques and organic waste management – Hazardous waste treatment and disposal

UNIT IV Recycling and Resource Recovery

Recycling processes and technologies – Recycling of different materials: Paper – Plastics – Glassmetals – Challenges and opportunities in recycling.

UNIT V Sustainable Waste Management Strategies

Waste minimization and prevention strategies – Waste-to-energy technologies and renewable energy generation – Integrated waste management systems – E-waste management and recycling – International perspectives on waste management

Contact Periods:

Lecture:	45 Periods	Tutorial:	- Periods	Practical: - Periods	Project:	- Periods
		,			Total:	45 Periods

TEXT BOOKS:

1. John Pichtel, "Waste Management Practices: Municipal, Hazardous and Industrial", 2nd Edition CRC Press, 2014

2. Tchobanoglous G., Theisen H., and Vigil S.A., "Integrated Solid Waste Management, Engineering Principles and Management", 2nd Edition, McGraw-Hill, USA, 2014

REFERENCES:

- 1. Peavy, H.S, Rowe, D.R., and G. Tchobanoglous, "Environmental Engineering", 1st Edition McGraw Hill Education, 2017
- Thomas Christensen, "Solid Waste Technology & Management", Vol.1, John Wiley & sons, USA, 2011

222

Dr. S. Balasubramanian, M.Tech., Ph.D. Professor & Head Department of Chemical Engineering KPR Institute of Engineering & Technology Arasur, Coimbatore - 641 407

- 9

9

9

9

	Contin	uous Internal As	sessments			
Assessme (100 Mari		Assessme (100 Mar) Marks)		End Semester	
*Individual Assignment / Case Study / Seminar / Project / MCQ	Written Test	*Individual Assignment / Case Study / Seminar / Project / MCQ	Written Test	Total Internal · Assessments	Examinations	
40	60	40	60	200	100	
		_		40	60	
Total				100		

EVALUATION PATTERN:

*Role Play / Group Discussions / Debates / Oral Presentations / Poster Presentations / Technical presentations can also be provided. Course Coordinator can choose any one / two components based on the nature of the course.

VERTICAL V

U21CHP29			2			
	RISK AND HAZOP ANALYSIS	3 0 0 0				С
		3	0	0	0	3

PRE-REQUISITES:

Nil

COURSE OBJECTIVES:

- To become a skill and person in hazard and HAZOP analysis and to find out the root cause of an accident.
- To gain knowledge in devising safety policy and procedures to be adopted to implement total safety in a plant.
- To understand safety handling and storage of chemicals.

COURSE OUTCOMES:

Upon completion of the course, the student will be able to

- CO1: Understand industrial safety procedure (Understand)
- **CO2:** Identify hazed and analyze HAZOP (Analyze)
- CO3: Manage the risk factors in industry (Apply)
- CO4: Proceed the safety procedures in industry (Analyze)
- CO5: Handle the chemicals in industry (Apply)

CO-PO MAPPING:

Correlation	levels	8:	1: Sli	ght (Lo	w)	2: M	oderat	e (Me	dium)		3: Sub	stantia	l (High)
CO5	2	2	-	-	-	2	-	-	-	-	•	-	1	1
CO4	2	2	-	-	-	2	-	-	-	-	-	-	1	1
CO3	2	2	-	-	-	2	-	-	-	-	-	-	1	1
CO2	3	2	-	-	-	2	-	-	•	-	-	-	1	1
CO1	3	2	-	-	-	2	-	-	•	-	-	-	1	1
POs COs	PO1	PO2	PO3	P04	PO5	P06	P07	PO8	P09	PO10	PO11	P012	PSO1	PSO

SYLLABUS:

UNIT I INDUSTRIAL SAFETY

Concepts of safety – Hazard classification chemical, physical, mechanical, ergonomics, biological and noise hazards – Hazards from utilities like air, water, steam

Dr. S. Balasubramanian, M.Tech., Ph.D. Professor & Head Department of Chemical Engineering KPR Institute of Engineering & Trichnology Arasur, Coimbatore - 641 407

9

9

UNIT II HAZARD IDENTIFICATION AND CONTROL. 9 HAZOP – Job safety analysis – Fault tree analysis – Event tree analysis – Failure modes and effect analysis and relative ranking techniques – Safety audit – Plant inspection – Past accident analysis 9 UNIT III RISK MANAGEMENT 9 Overall risk analysis – Chapains model, E and FI model– Methods for determining consequences effects: Effect of fire, Effect of explosion and toxic effect – Disaster management plan – Emergency planning – Onsite and offsite emergency planning – RIsk management – Gas processing complex, refinery – First aids UNIT IV SAFETY PROCEDURES 9

Safety in plant design and layout – Safety provisions in the factory act 1948 – Indian explosive act 1884 – ESI act 1948 – Advantages of adopting safety laws.

UNIT V SAFETY IN HANDLING AND STORAGE OF CHEMICALS

Safety measures in handling and storage of chemicals – Fire chemistry and its control – Personnel protection – Safety color codes of chemicals.

Contact Periods:

Lecture:	45 Periods	Tutorial:	- Periods	Practical: - Periods	Project	- Periods
					Total:	45 Periods

TEXT BOOKS:

1. Blake, R.P., "Industrial Safety", 3rd Edition, Prentice Hall, 2000.

2. Lees, F.P., "Loss Prevention in Process Industries", 4th Edition, Butterworth Heinemann, 2012.

REFERENCES:

- 1. Geoff Wells, "Hazard Identification and Risk Assessment", Institute of Chemical Engineers, 1996
- 2. John Ridley and John Channing, "Safety at Work", 6th Edition, Butterworth Heinemann, 2003.
- Raghavan, K.V. and Khan, A.A., "Methodologies in Hazard Identification and Risk Assessment", Manual by CLRI, 1990.

EVALUATION PATTERN:

	Contin	uous Internal As	sessments				
Assessme (100 Mari		Assessme (100 Mar			End Semeste		
*Individual Assignment / Case Study / Seminar / Project / MCQ	Written Test	*Individual Assignment / Case Study / Seminar / Project / MCQ	Written Test	Total Internal Assessments	Examinations		
40	60	40	60	200 .	100		
				40	60		
	Total				0		

*Role Play / Group Discussions / Debates / Oral Presentations / Poster Presentations / Technical presentations can also be provided. Course Coordinator can choose any one / two components based on the nature of the course.

B.TECH. – CH –	
	VERTICAL V
U21CHP30	AIR POLLUTION, MONITORING AND CONTROL
	3 0 0 0 3

PRE-REQUISITES:

- Nil
- COURSE OBJECTIVES:
- To provide an understanding of the basic concepts of air pollution and its adverse effects on human health and the environment.
- To introduce various air pollution control technologies and their principles.
- To enable students to design and implement air pollution control strategies

COURSE OUTCOMES:

Upon completion of the course, the student will be able to

- CO1: Identify the sources and types of air pollutants and their effects on human health and the
 - environment (Understand)
- CO2: Analyze the principles and working mechanisms of various air pollution control technologies, such as scrubbers, electrostatic precipitators, and catalytic converters (Analyze)
- CO3:Design and evaluate air quality monitoring programs using appropriate methods and instruments (Apply)
- CO4:Explain the regulatory framework and policies for air pollution control at national and international levels (Understand)
- CO5: Ability to exhibit the skill to develop membrane processes, adsorption process and inorganic separation process (Understand)

Correlation levels: 1: Slight (Low)			2: Moderate (Medium)				3: Substantial (High)							
CO5	2	1	2	2	3	-	-	1	-	-	-	•	3	3
CO4	2	1	2	2	3	-	-	1	-	-	-	-	3	3
CO3	2	1	2	2	3	-	-	1	-	-	-	-	3	3
CO2	2	1	2	2	3	-	•	1	•	-	•	-	3	3
CO1	2	1	2	2	3	-	-	1	-	-	-	-	3	3
POs COs	P01	PO2	PO3	PO4	PO5	P06	P07	P08	PO9	PO10	PO11	P012	PSO1	PSO2

CO-PO MAPPING:

Dr. S. Balasubramanian, M.Tech., Ph.D. Professor & Head Department of Chemical Engineering KPR Institute of Engineering & Technology Arasur, Coimbatore - 641 407

SYLLABUS:

q Introduction UNIT I Introduction: Sources - Effects on - Ecosystems - Characterization of atmospheric pollutants - Air pollution episodes of environmental importance - Indoor Air Pollution - Sources - Effects 9 **Air Pollution Control Technologies** UNIT II Principles and working mechanisms of various air pollution control technologies - Types of control devices (e.g.- Scrubbers - Electrostatic precipitators - Catalytic converters) - Evaluation of control technologies 9 UNIT III **Air Quality Monitoring** Sampling and analysis of air pollutants - Air quality monitoring networks and methods - Data analysis and interpretation 9 UNIT IV **Regulatory Framework and Policies** National and International regulations and policies for air pollution control - Emission standards and permits -- Economic instruments for pollution control 9 UNIT V **Air Pollution Control Strategies** Control strategies for different sources of air pollution (e.g., Industrial emissions - Transportation) -Cost-benefit analysis of control measures - Case studies of successful air pollution control programs **Contact Periods:** Practical: - Periods Project: - Periods 45 Periods Tutorial: - Periods Lecture: Total: 45 Periods

TEXT BOOKS:

- 1. Noel De Nevers, "Air Pollution Control Engineering", 2nd Edition, Waveland Pr Inc. 2010
- Anjaneyulu Y, "Text book of Air Pollution and Control Technologies", 1st Edition, Allied Publishers, 2000

REFERENCES:

- 1. M. N. Rao and H V N Rao, "Air pollution", 2nd Edition, Tata Mc-GrawHill Publication. 2010
- 2. H. C. Perkins, "Air pollution", 1st Edition, Tata McGraw Hill Publication, 2006

EVALUATION PATTERN:

	Contin	uous Internal As	sessments				
Assessme (100 Mari		Assessme (100 Mar			End Semeste		
*Individual Assignment / Case Study / Seminar / Project / MCQ	Written Test	*Individual Assignment / Case Study / Seminar / Project / MCQ		Total Internal Assessments	Examinations		
40	60	40	60	200	100		
	_			40	60		
	То	tal	100				

*Role Play / Group Discussions / Debates / Oral Presentations / Poster Presentations / Technical presentations can also be provided. Course Coordinator can choose any one / two components based on the nature of the course.

Dr. S. Balasubramanian, M.Tech., Ph.D. Professor & Head Department of Chemical Engineering KPR Institute of Engineering & Tothnology Arasur, Coimbatore - 641 407

VERTICAL VI

	COMPUTER APPLICATIONS IN CHEMICAL ENGINEERING	Ga	tego	ry: Pi	PEC							
U21CHP31		L	T	P	С							
	ENGINEEKING	3	0	0	3							

PRE-REQUISITES:

Nil

COURSE OBJECTIVES:

- To obtain skills in creating database retrieval of data
- To solve Mathematical models through linear and Non-linear Programming
- To obtain skills in preparing plant layout

COURSE OUTCOMES:

Upon completion of the course, the student will be able to

- CO1: Understand the command-line interfaces, including their structure, syntax, and basic commands (Understand)
- CO2: Understand the principles of efficient data organization and be able to construct spreadsheets that effectively analyze and present data (Understand)
- CO3: Perform descriptive statistics, such as calculating measures of central tendency and dispersion, and generate graphical representations of data using charts and graphs (Apply)
- CO4: Understand the fundamental database concepts, including data models, schemas, tables,

records, and fields (Understand)

CO5: Understand the fundamental concepts and principles of mathematical programming (Understand)

POs COs	PO1	PO2	PO3	P04	PO5	PO6	P07	PO8	P09	PO1 0	PO1 1	PO1 2	P\$0 1	PSC 2
CO1	3	3	3	-	3	-	-	-	-	-	-	-	1	2
CO2	3	3	3	-	3	-	•	-	-	-	-	•	1	2
CO3	3	3	3	-	3	-	-	-	-	-	-	-	1	2
CO4	3	3	3	-	3	•	-	-	-	-	-	-	1	2
CO5	3	3	3	-	3	-	-	•	-	-	-	-	1	2
Correlation	level:	s:	1: Slig	ght (Lo	w)	2: Moderate (Medium)				3: Substantial (High))

CO-PO MAPPING:

SYLLABUS:

UNIT I INTRODUCTION

9

Review on Programming languages - Basic- Fortran - Review on operating system commands

230

UNIT II SPREAD SHEETS

Application In Density - Molecular weight - Mole and percentage compositions - Empirical and Molecular formula calculations - Heat of mixing - Gas laws - Vapour pressure - Chemical Kinetics calculations

UNIT III **SPREAD SHEETS (DATA ANALYSIS)**

Application in data processing - Statistical analysis of data - Regression - Analysis of variance -Interpolation - Graphical representations of various Chemical Engineering problem both in laboratory exercise and core subjects such as Mechanical operation - Reaction Engineering - Distillation etc

UNIT IV DATABASE

Design and developments of simple databases on Chemical and Physical properties of substances. Retrieval and Database in report - Query and other formats - interfacing with other software. Preparation of Material and energy Balances preparation of plant layout Introduction to frequency response of closed-loop systems - Control system design by frequency response techniques- Bode diagram - Stability criterion - Tuning of controllers Z-N tuning rules - C-C tuning rules

UNIT V MATHEMATICAL PROGRAMMING

Design and developments of simple databases on Chemical and Physical properties of substances - Retrieval and Database in report - Query and other formats - Interfacing with other software-Preparation of Material and energy Balances preparation of plant layout

Contact Periods:

Lecture:	45 Periods	Tutorial: - Periods	Practical: - Periods	Project:	 Periods
				Total:	45 Periods

TEXT BOOKS:

1. Hanna, O.T. Scandell, O.C., "Computational Methods in Chemical Engineering", 1st Edition, Prentice Hall, 1995

2. R.K. Taxali, T.K.Base, " IV made simple", 1st Edition, Tata McGraw-Hill, 1991

REFERENCES:

1. Jerry, O., Breneman, G.L., "Spreadsheet Chemistry", 1st edition, Prentice Hall, 1991 2. Myers, A.L. Seider W.D., " Introduction to Chemical engineering and Computer Calculations", 3rd Edition, Prentice Hall, 1998

Dr. S. Balasubramanian, M.Tech., Ph.D. Professor & Head Department of Chemical Engineering KPR Institute of Engineering & Technology Arasur, Coimbatore - 641 407

231

9

9

9

EVALUATION PATTERN:

	Contin	uous Internal As	sessments		
Assessme (100 Mark	1.0	Assessme (100 Mari			End Semester
*Individual Assignment / Case Study / Seminar / Mini Project / MCQ	Written Test	*Individual Assignment / Case Study / Seminar / Mini Project / MCQ	nent / Written udy / Test	Total Internal Assessments	Examinations
40	60	40	60	200	100
				40	60
	То	tal		10	0

*Role Play / Group Discussions / Debates / Oral Presentations / Poster Presentations / Technical presentations can also be provided. Course coordinator can choose any one / two components based on the nature of the course.

B.TECH. – CH – F	2021 - CBCS	(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	Cent		PRIE		
	VERTICAL VI	ul Hay	cad Cour	emi Ses	- J.	e chus	
U21CHP32	ARTIFICIAL INTELLIGENCE IN CHEMICAL ENGINEERING	* Co L 3	Cate T	pory:	J 0	C 3	

PRE-REQUISITES:

Nil

COURSE OBJECTIVES:

- Study the concepts of Artificial Intelligence.
- Learn the methods of solving problems using Artificial Intelligence.
- Introduce the concepts of Expert Systems and machine learning.

COURSE OUTCOMES:

Upon completion of the course, the student will be able to

CO1: Identify problems that are amenable to solution by AI methods (Apply)

CO2: Identify appropriate AI methods to solve a given problem (Apply)

CO3: Formalize a given problem in the language/framework of different AI methods (Understand)

CO4: Implement basic AI algorithms (Understand)

CO5: Design and carry out an empirical evaluation of different algorithms on a problem formalization, and state the conclusions that the evaluation supports (Apply)

CO-PO MAPPING:

CO5	3	3	3	-	3	+	-	-	-	-	-	-	1	2
CO4	3	3	3	-	3		-	-	-	-	-	-	1	2
CO3	3	3	3	-	3	-	-	-	-	-	-	-	1	2
CO2	3	3	3	-	3	-	-	-		-	-		1	2
CO1	3	3	3	-	3	-	-	-	-	-	-	-	1	2
POs COs	PO 1	PO2	PO3	P04	PO5	P06	P07	PO8	P09	PO1 0	PO1 1	PO1 2	PSO 1	PSC 2

SYLLABUS:

UNIT I INTRODUCTION

Introduction – Definition – Future of Artificial Intelligence – Characteristics of Intelligent Agents– Typical Intelligent Agents – Problem Solving Approach to Typical AI problems

233

Engin

Dr. S. Balasubramanian, M.Tech., Ph.D. Professor & Head Department of Chemical Engineering KPR Institute of Engineering & Technology Arasur, Colmbatore - 641 407

UNIT II PROBLEM SOLVING METHODS

Problem solving Methods – Search Strategies – Uninformed – Informed – Heuristics – Local Search Algorithms and Optimization Problems – Searching with Partial Observations – Constraint Satisfaction Problems – Constraint Propagation – Backtracking Search – Game Playing – Optimal Decisions in Games – Alpha - Beta Pruning – Stochastic Games

UNIT III KNOWLEDGE REPRESENTATION

First Order Predicate Logic – Prolog Programming – Unification – Forward Chaining-Backward Chaining – Resolution – Knowledge Representation – Ontological Engineering-Categories and Objects – Events – Mental Events and Mental Objects – Reasoning Systems for Categories – Reasoning with Default Information.

UNIT IV SOFTWARE AGENTS

Architecture for Intelligent Agents – Agent communication – Negotiation and Bargaining – Argumentation among Agents – Trust and Reputation in Multi-agent systems.

UNIT V APPLICATIONS & CHEMICAL ENGINEERING APPLICATIONS

Al applications – Language Models – Information Retrieval – Information Extraction – Natural Language Processing – Machine Translation – Speech Recognition – Robot – Hardware – Perception – Planning – Chemical Engineering Applications.

Contact Periods:

Lecture:	45 Periods	Tutorial: - Periods	Practical: - Periods	Project:	- Periods
				Total:	45 Periods

TEXT BOOKS:

- S. Russell and P. Norvig, "Artificial Intelligence: A Modern Approach", 3rd Edition, Mc Graw Hill, Prentice Hall, 2009.
- 2. Thomas Quantrille Y. Liu, "Artificial Intelligence in Chemical Engineering", 1st Edition, 1992

REFERENCES:

- 1. Kevin Night and Elaine Rich, Nair B., "Artificial Intelligence (SIE)", 1st Edition, Mc Graw Hill, 2008
- Deepak Khemani, "A First Course in Attificial Intelligence", 1st Edition, Tata McGraw Hill Education, 2013

Dr. S. Balasubramanian, M.Tech., Ph.D. Professor & Head Department of Chemical Engineering KPR Institute of Engineering & Technology Arasur, Coimbatore - 641 407

<u> 9</u>

9

EVALUATION PATTERN:

55	Contin	uous Internal As	sessments			
Assessme (100 Mark		Assessme (100 Mar			End Semester	
*individual Assignment / Case Study / Seminar / Mini Project / MCQ	Written Test	*Individual Assignment / Case Study / Seminar / Mlni Project / MCQ		Total Internal Assessments	Examinations	
40	60	40	60	200	100	
	· · · · · · · · · · · · · · · · · · ·			40	60	
	То	tal		10	0	

*Role Play / Group Discussions / Debates / Oral Presentations / Poster Presentations / Technical presentations can also be provided. Course coordinator can choose any one / two components based on the nature of the course.

235

	VERTICAL VI	ourse	s /s		biliti Bayat	10
	4*	Comba	Cate	gory	PEC	;
U21CHP33	OPTIMIZATION OF CHEMICAL PROCESS	L	Т	P	J	C
		3	0	0	0	3

neering

Centre for

PRE-REQUISITES:

• Nil

COURSE OBJECTIVES:

- To develop objective functions and use linear programming for solution to chemical engineering problems
- To apply geometric, dynamic and integer programming and genetic algorithms for solution to chemical engineering problems
- To apply optimization techniques for real world problems and be knowledgeable to use software packages for their solution

COURSE OUTCOMES:

Upon completion of the course, the student will be able to

- CO1: Frame mathematical models and formulate optimization models for chemical processes / equipment (Apply)
- **CO2:** Understand the concept of optimum and extremum and the necessary and sufficient conditions for extremum and solve single and multivariable optimization problems through various techniques (Understand)
- CO3: Apply various search methods to solve unconstrained single variable optimization and unconstrained multi variable optimization (Apply)
- CO4: Apply higher order techniques like geometric programming, dynamic and integer programming and genetic algorithms (Apply)
- **CO5:** Able to use the principles of engineering and in particular chemical engineering to develop equality and inequality constraints for an optimization problem (Understand)

CO-PO MAPPING:

Correlation	n level:	B:	1: Slig	ght (Lo	w)	2: M	oderat	e (Me	dium)		3: Sub	stantia	l (High)
CO5	3	2	1	-	2	-	-	-	-	-	-	1	1	-
CO4	3	2	1	-	2	•	-	-	-	-		1	1	1
CO3	3	2	1	-	2	-	-	-	-	-	-	1	1	-
CO2	3	2	1	-	2	-	-	-	-	-	-	1	1	1
CO1	3	2	1	-	2	-	-	-	-	-	-	1	2	1
POs COs	P01	PO2	PO3	P04	P05	P06	P07	PO8	P09	PO10	P011	PO12	PSO1	PSO

SYLLABUS:

UNIT I INTRODUCTION TO OPTIMIZATION

Introduction to optimization – Applications of optimization in chemical engineering – Classification of optimization problems – Developing models for optimization

UNIT II CONTINUITY OF FUNCTIONS

Continuity of Functions; NLP Problem Statement Convexity and Its Applications – Interpretation of the Objective Function in Terms of its Quadratic Approximation – Necessary and Sufficient Conditions for an Extremum of an Unconstrained Function – Region elimination methods; interpolation methods – Direct root methods

UNIT III DIFFERENT METHODS USING FUNCTION VALUES

Methods Using Function Values Only – Random Search – Grid Search – Univariate Search – Simplex Search Method – Conjugate Search Directions – Methods That Use First Derivatives – Steepest Descent – Conjugate gradient Methods – Newton's Method and Quasi Newton's Method

UNIT IV SOLUTIONS OF PROBLEM USING EXCEL

Introduction to geometric – Dynamic and integer programming and genetic algorithms – Linear Programming – Solution of Problems using Excel solver

UNIT V FORMULATION OF OBJECTIVE FUNCTIONS

Formulation of objective functions; fitting models to data; applications in fluid mechanics - Heat transfer- Mass transfer - Reaction engineering - Equipment design - Reaction engineering-Resource allocation and inventory control.

Contact Periods:

Lecture:	45 Periods	Tutorial: - Periods	Practical: - Periods	Project:	- Periods
				Total:	45 Periods

TEXT BOOKS:

- Rao, S. S., Engineering Optimization Theory and Practice, 3rd Edition, John Wiley & Sons, New York, 1996.
- Edgar, T.F., Himmelblau, D.M., "Optimisation of Chemical Processes ",1st Edition, McGraw-Hill Book Co., New York, 2003
- Reklaitis, G.V., Ravindran, A., Ragsdell, K.M. "Engineering Optimisation ", 1* Edition, John Wiley, New York, 1980

237

Dr. S. Balasubramanian, M.Tech., Ph.D. Professor & Head

Professor & Head Department of Chemical Engineering KPR Institute of Engineering & Technology Arasur, Coimbatore - 641 407

9

9

9

9

REFERENCES:

- 1. Venkataraman, P., "Applied optimization with MATLAB programming" ,1st Edition, John Wiley & Sons, 2007
- 2. Ferris, M. C., Mangasarian, O. L., & Wright, S. J., "Linear programming with MATLAB", Vol.7, 2007

EVALUATION PATTERN:

	Contin	uous Internal As	sessments		
Assessme (100 Mark		Assessment II (100 Marks)			End Semester
*Individual Assignment / Case Study / Seminar / Mini Project / MCQ	Written Test	*Individual Assignment / Case Study / Seminar / Mini Project / MCQ	Written Test	Total Internal Assessments	Examinations
40	60	40	60	200	100
				40	60
	Total			10	0

*Role Play / Group Discussions / Debates / Oral Presentations / Poster Presentations / Technical presentations can also be provided. Course coordinator can choose any one / two components based on the nature of the course.

B.TECH. – CH – F	2021 – CBCS	entre Ce	ntre	for	KPE	NET
	VERTICAL VI	Ac:	ader	nic	nno	
U21CHP34	COMPUTATIONAL FLUID DYNAMICS	A * Coin	Ca b H o	T	ry: P P	EC C
			3	0	0	3

PRE-REQUISITES:

Nil

COURSE OBJECTIVES:

- To make the students to demonstrate competence in setting up computational fluid dynamics models for some industrially important applications.
- This technical competence in building and conducting CFD simulations is a skill which enhances employability.
- To know about recent software tool techniques used in fluid flow operations.

COURSE OUTCOMES:

Upon completion of the course, the student will be able to

- CO1: Understand the fundamental conservation laws in fluid dynamics, including conservation of mass, momentum, and energy (Understand)
- **CO2:** Understand the principles and techniques of finite difference approximation, including forward, backward, and central difference schemes (Understand)
- **CO3:** Apply the finite volume method to solve a range of engineering problems, such as steady-state and transient flow simulations, heat transfer problems, and multi-phase flow problems (Apply)
- CO4: Apply their knowledge and skills to solve real-world engineering problems involving fluid flows (Apply)
- **CO5:** Understand the various grid generation techniques used in computational fluid dynamics (CFD) and other engineering disciplines (Understand)

Correlation	levels	3:	1: Slig	ght (Lo	w)	2: M	oderat	e (Med	dium)	;	3: Sub	stantia	l (High)
CO5	3	3	2	3	3	-	-	-	-	2	-	-	2	3
CO4	3	3	2	3	3	-	-	-	-	2		-	2	3
CO3	3	3	2	3	3	-	•	-	-	2	-	-	2	3
CO2	3	3	2	3	3	•	-	-	-	2	-	-	2	3
CO1	3	3	2	3	3	-	-	-	-	2	-	-	2	3
POs COs	P01	PO2	PO3	PO4	PO5	P06	P07	PO8	PO9	PO1 0	PO1 1	PO1 2	PSO 1	PSC 2

CO-PO MAPPING:

239

Dr. S. Balasubramanian, M.Tech., Ph.D. Professor & Head Department of Chemical Engineering KPR Institute of Engineering & Technology Arasur, Coimbatore - 641 407

1.16

Syllabus:

CONSERVATION LAWS AND TURBULENCE MODELS UNIT I

Governing equations of fluid flow and heat transfer - Mass conservation - Momentum and energy equation - Differential and integral forms - Conservation and non-conservation form. Characteristics of turbulent flows - Time averaged Navier Strokes equations - Turbulence models-one and two equation - Reynolds stress - LES and DNS.

FINITE DIFFERNCE APPROXIMATION UNIT II

Mathematical behaviour of PDE - Finite difference operators - Basic aspects of discretization by FDM - Explicit and implicit methods - Error and stability analysis.

FINITE VOLUME METHOD UNIT III

Diffusion problems - Explicit and implicit time integration; Convection-diffusion problems - properties of discretisation schemes - Central - Upwind - Hybrid - QUICK schemes; Solution of discretised equations.

FLOW FIELD COMPUTATION UNIT IV

Pressure velocity coupling -- Staggered grid -- SIMPLE algorithm -- PISO algorithm for steady and unsteady flows.

GRID GENERATION UNIT V

Physical aspects - Simple and multiple connected regions - Grid generation by PDE solution - Grid generation by algebraic mapping.

Contact Periods:

Lecture:	45 Periods	Tutorial: - Periods	Practical: - Periods	Project:	 Periods
				Total:	45 Periods

TEXT BOOKS:

- 1. Anderson, J. D., "Computational Fluid Dynamics: The Basics with Applications", 1st Edition, McGraw-Hill, 1995.
- 2. Fletcher, C. A. J., "Computational Techniques for Fluid Dynamics", 1st Edition, Springer Verlag, 1997.

REFERENCES:

- 1. Versteeg, H.K. and Malalasekera, W., "An Introduction to Computational Fluid Dynamics: The Finite Volume Method", Pearson Education Ltd., 2007.
- 2. Chung T.J., Computational Fluid Dynamics, 1st Edition, Cambridge University Press, 2003.
- 3. Taylor, C and Hughes, J.B. "Finite Element Programming of the NavierStock Equation", 1st Edition, Pineridge Press Limited, U.K., 1981.

Dr. S. Balasubramanian, M.Tech., Ph.D. **Professor & Head** Department of Chemical Engineering KPR Institute of Engineering & Technology Arasur, Coimbatore - 641 407

9

9

9

EVALUATION PATTERN:

	Contin	uous Internal As	sessments		
Assessme (100 Mari		Assessme (100 Mar		Total Internal	End Semester
*Individual Assignment / Case Study / Seminar / Mini Project / MCQ	Written Test	*Individual Assignment / Case Study / Seminar / Mini Project / MCQ	Assignment / Case Study / Seminar / Mini		Examinations
40	60	40	60	200	100
	_			40	60
	То	tai		10	0

*Role Play / Group Discussions / Debates / Oral Presentations / Poster Presentations / Technical presentations can also be provided. Course coordinator can choose any one / two components based on the nature of the course.

10

в.

.TECH. – CH – R	VERTICAL VI	1011PT	1 1 8	KPR	
U21CHP35	PROCESS MODELING AND SIMULATION	L 3	tego T 0	ry: P P 0	EC C 3

ineering and

PRE-REQUISITES:

Nil

COURSE OBJECTIVES:

- To develop steady state and transient models for processes and unit operations •
- To understand lumped and distributed parameter models and to seek solution of models using • analytic and numerical techniques
- To construct data driven models and estimate the parameters.

COURSE OUTCOMES:

Upon completion of the course, the student will be able to

CO1: Understand the programming languages and operating system commands (Understand)

CO2: Able to create spread sheets for empirical and molecular formula calculations (Understand)

CO3: Analyze data using spread sheets for various chemical engineering problems (Analyse)

- CO4: To design simple databases on chemical and physical properties of substances using software (Analyse)
- CO5: Understand dynamic Programming in Chemical Engineering through PC based programs (Understand)

CO-PO MAPPING:

Correlation	n levels	S:	1: Sli	ght (Lo	w)	2: M	oderat	e (Me	dium)		3: Sub	stantia	ı <mark>l (Hig</mark> h)
CO5	3	2	1	-	2	-	-	-	-	•	-	1	1	-
CO4	3	2	1	-	2	-	-	•	-	-	-	1	1	1
CO3	3	2	1	-	2	-	-	-	-	-	-	1	1	-
CO2	3	2	1	-	2	-	-	-	-	-	-	1	1	1
CO1	3	2	1	-	2	-	-	-	-	-	-	1	2	1
POs COs	P01	P02	P03	P04	PO5	P06	P07	PO8	PO9	PO10	P011	P012	P801	PSO:

SYLLABUS:

INTRODUCTION TO MODELLING AND SIMULATION UNIT I

9

Department of Chemical Engineering KPR Institute of Engineering & U. Uphology Arasur, Coimbatore - 641 407

Introduction to modelling and simulation - Classification of mathematical models - Conservation equations and auxiliary relations

Dr. S. Balasubramanian, M.Tech., Ph.D. **Professor & Head**

UNIT II DEGREE OF FREEDOM ANALYSIS

Degree of freedom analysis – Single and network of process units – Systems yielding linear and nonlinear algebraic equations – Flow sheeting – Sequential modular and equation-oriented approach – Tearing – Partitioning and precedence ordering – Solution of linear and non-linear algebraic equations using Matrices and Numerical techniques – Error estimates.

UNIT III SOLUTION OF ODE

Analysis of liquid level tank- Gravity flow tank- jacketed stirred tank heater - Reactors - Flash and distillation column- Solution of ODE initial value problems - Matrix differential equations- simulation of closed loop systems - Solution of ODE using Eigen values - Jordan Canonical Form - Stiff equations - Gear's algorithm - Perturbation Methods

UNIT IV METHODS OF ANALYSIS

Analysis of compressible flow – Heat exchanger– Packed columns – Monolith Reactor Modelling – Pseudo – Homogeneous and Heterogeneous models for catalytic reactors – Plug flow reactor– solution of ODE boundary value problems – Shooting Method

UNIT V MODEL CLASSIFICATION AND DEVELOPMENT

Analysis laminar flow in pipe – Sedimentation – Boundary layer flow – Conduction – Heat exchanger– Heat transfer in packed bed – Diffusion – Packed bed adsorption – Plug flow reactor – Hierarchy in model development – Classification and solution of partial differential equations – Characteristic curves for parabolic – Elliptic and Hyperbolic equations – Empirical modelling – parameter estimation – Population balance and stochastic modelling – Principal Component Analysis.

Contact Periods:

Lecture:	45 Periods	Tutorial: - Periods	Practical: - Periods	Project	- Periods
				Total	45 Periods

TEXT BOOKS:

- Bequette, B.W., "Process Dynamics: Modelling, Analysis and Simulation," 1st Edition, Prentice Hall, 1998
- 2. Himmelblau D.M. and Bischoff K.B., " Process Analysis and Simulation" , Vol.1., Wiley, 1988
- Varma A. and Morbidelli M., "Mathematical Methods in Chemical Engineering", 1st Edition, Oxford University Press, 1997

REFERENCES:

- 1. Golub G.H. and Van Loan C.F., "Matrix Computations", 3rd Edition, Johns Hopkins University Press, 1996.
- Ogunnaike B. and W. Harmon Ray., "Process Dynamics, Modeling, and Control", 1st Edition, Oxford University Press, 1995

Dr. S. Balasubramanian, M.Tech., Ph.D. Professor & Head Department of Chemical Engineering KPR Institute of Engineering & Technology Arasur, Coimbatore - 641 407

9

9

9

3. Chapra S.C. and Canale R.P., "Numerical Methods for Engineers", 3rd Edition, McGraw Hill, 2001

Assessme (100 Mark	End Semeste					
*Individual Assignment / Case Study / Seminar / Mini Project / MCQ		*Individual Assignment / Case Study / Seminar / Mini Project / MCQ		Total Internal Assessments	Examinations	
40	60	40	60	200	100	
		tal	40	60		
	00					

EVALUATION PATTERN:

*Role Play / Group Discussions / Debates / Oral Presentations / Poster Presentations / Technical presentations can also be provided. Course coordinator can choose any one / two components based on the nature of the course.

Centre f KPRIET AcademicLosmBayond									
Nam Co	our	ses	PCC	/					

VERTICAL VI

	VERTICAL VI	131		563	18	/	
	3	Category: PCC					
U21CHP36	IOT IN CHEMICAL ENGINEERING	L	T	P	J	C	
		3	0	0	0	3	

PRE-REQUISITES:

• Nil

COURSE OBJECTIVES:

- To apply basic concepts of the Internet of Things (IoT) and its relevance to Chemical Engineering
- To learn about the integration of IoT with chemical processes for real-time monitoring, control, and optimization
- To explore industry-specific case studies and emerging trends in IoT for Chemical Engineering

COURSE OUTCOMES:

Upon completion of the course, the student will be able

CO1: To understating the principles and applications of IoT in Chemical Engineering (Understand)

CO2: To apply IoT hardware and software components in Chemical Engineering contexts (Apply)

CO3: To interpret IoT data for real-time monitoring and optimization of chemical processes (Apply)

CO4: To explain the challenges and opportunities in implementing IoT in Chemical Engineering (Understand)

CO5: To understand emerging trends and future directions of IoT in Chemical Engineering (Understand)

Correlation	level	5:	1: Slig	ght (Lo	w)	2: M	oderat	e (Med	dium)		3: Sub	stantia	l (High)
CO5	3	2	1	1	-	-	-	-	-	-	-	-	1	1
CO4	3	2	1	-	-	-	-	-	-	-	-	-	1	1
CO3	3	2	1	-	-	-	-	-	-	-	-	-	1	1
CO2	3	2	1	-	-	-	-	-	-	-	-	-	1	1
CO1	3	2	1	1	-	-	-	-	-	-	-	-	1	1
POs COs	P01	P02	PO3	PO4	P05	P06	P07	PO8	P09	PO10	PO11	PO12	P\$01	PSO2

CO-PO MAPPING:

SYLLABUS:

UNIT I INTRODUCTION TO IOT IN CHEMICAL ENGINEERING

9

Definition and significance of IoT in Chemical Engineering – Overview of IoT architecture and components – Challenges and opportunities in IoT applications.

Dr. S. Balasubramanian, M.Tech., Ph.D. Professor & Head Department of Chemical Engineering KPR Institute of Engineering & Technology Arasur, Coimbatore - 641 407

9

9

9

UNIT II SENSORS AND ACTUATORS FOR IOT

Types of sensors and their applications in chemical processes – Actuators and their role in IoT systems – Sensor calibration and data acquisition techniques.

UNIT III COMMUNICATION TECHNOLOGIES FOR IOT

Wireless communication protocols (e.g. Wi-Fi – Bluetooth – Zigbee) – Cloud computing and data storage for IoT applications – Security and privacy considerations in IoT systems

UNIT IV DATA ANALYSIS AND VISUALIZATION FOR IOT 9

Data pre processing and cleaning techniques – Statistical analysis and machine learning algorithms for IoT data – Data visualization tools and techniques.

UNIT V IOT APPLICATIONS IN CHEMICAL ENGINEERING

Real-time process monitoring and control using IoT -- Predictive maintenance and asset management - Energy optimization and sustainability in chemical processes.

Contact Periods:

Lecture: 45 Periods	Tutorial: - Periods	Practical: - Periods	Project:	- Periods
			Total:	45 Periods

TEXT BOOKS:

- 1 Bhushan- Aravind, Internet of Things for the Chemical Industry: Implementing Industry 4.0, 1st Edition, CRC Press, 2012
- 2 Lewis, Perry, Internet of Things for Architects: Architecting IoT solutions by implementing sensors, communication infrastructure, edge computing, analytics, and security, 1st Edition, Packt Publishing, 2010

REFERENCES:

- 1 Wang, Sabina Jeschke, Gang Huang, Vincenzo Ciancaglini, and Yushun Fan Industrial Internet of Things: Cyber manufacturing Systems, 1st Edition, Springer, 2013
- 2 Yan Zhang, Houbing Song, and Daniel Liang, J. Internet of Things: Principles and Paradigms,1st Edition, Wiley, 2011

EVALUATION PATTERN:

	Contin	uous Internal As	sessments			
Assessme (100 Mari	End Compostor					
*Individual Assignment / Case Study / Seminar / Mini Project / MCQ		*Individual Assignment / Case Study / Seminar / Mini Project / MCQ	Written Test	Total Internal Assessments	End Semester Examinations	
40	60	40	60	200	100	
	То	40	60			
	0					

*Roll Play / Group Discussions / Debates / Oral Presentations / Poster Presentations / Technical presentations can also be provided. Course Designer can choose any one / two components based on the nature of the course.

.

KPR Institute of Engineering and Technology

Learn Beyond

(Autonomous, NAAC "A")

0422 2635600, +91 75488 88444 admission@kpriet.ac.in Avinashi Road, Arasur, Coimbatore - 641407

kpriet.edu.in 🚯 💿 🖸 🕒 🌀 /KPRIETonline